When Population PK modeling helps drive oncology phase I trial: First implementation of Exposure Driven dose Escalation With Overdose Control (ED-EWOC) design

Sandrine Micallef¹, Alexandre Sostelly¹, Jiawen Zhu², Andreas Guenther¹, Barbara Brennan¹, Francois Mercier¹

¹Roche Pharma Research and Early Development, Clinical Pharmacology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
²Pharma Development Biometrics Biostatistics, F. Hoffmann-La Roche Ltd, New York, USA
ED-EWOC as a new design for dose finding trials

• ED-EWOC can provide benefit through **exposure quantification** in the dose escalation process and in the dose recommendation:
 – When PK **variability** is large (and particularly when it can be explained by **covariates**)
 – When PK is **non linear**

• Methodology explored using simulations of similar CRM-designs[1]

• **Implemented**
 – in a multi center, open label, phase I, dose finding study in patients with late stage cancer
 – Pilot, actual dose escalation in the study was driven by EWOC

AUC explains DLT better than dose
AUC explains DLT better than dose

R² = 0.28
AUC explains DLT better than dose

AUC and DLT

DOSE and DLT

R² = 0.28

R² = 0.44
Exposure driven EWOC is an iterative adaptive process

Treat a cohort of patients at recommended Dose (RD)
- Nb. DLT
- Concentrations in blood

Informed decision by investigators on next dose

Check stopping rules
- Apply safety rules
- Assess new RD

Stop trial and declare Maximum Tolerated Dose

ED-EWOC specific

Update Dose - Exposure relationship
PopPK analysis

Update Exposure-DLT rate relationship

Compute integrated dose-DLT rate relationship
Get predictive probability of DLT

Stop trial and declare Maximum Tolerated Dose
From Cohort 3 (2.5mg) to Cohort 4 (2.75mg): dose recommendation with ED-EWOC

<table>
<thead>
<tr>
<th>Cohort</th>
<th>PT Id</th>
<th>DOSE</th>
<th>AUCi</th>
<th>DLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1342</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2968</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2.5</td>
<td>5236</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2.5</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2.5</td>
<td>6203</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4.75</td>
<td>27350</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4.75</td>
<td>15171</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4.75</td>
<td>11496</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>2.5</td>
<td>8751</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>2.5</td>
<td>11758</td>
<td>0</td>
</tr>
</tbody>
</table>

Recommended dose: 2.75mg
Recommended AUC: 8500 pg.h/mL

Integrated Dose-AUC-DLT rate

Targeted toxicity
Under dosing
Overdosing

AUC = Predicted AUC (pg.h/mL)

AUC = 1000 pg.h/mL
AUC = 1500 pg.h/mL
AUC = 2000 pg.h/mL

DLT (days)
Learnings and conclusion

Key results
- The process for dose escalation recommendation from ED-EWOC was smooth, (well specified responsibilities)
- ED-EWOC is implementable from an operational perspective, (1 additional week required for data analysis and for running design)

<table>
<thead>
<tr>
<th></th>
<th>EWOC</th>
<th>ED-EWOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage /</td>
<td>• Quite simple</td>
<td>• Quantitate the impact of PK variability on clinical endpoint</td>
</tr>
<tr>
<td>Benefit</td>
<td>implementation</td>
<td>• Characterization of PK and PD related uncertainty</td>
</tr>
<tr>
<td></td>
<td>• Software available</td>
<td>• Leverage prior knowledge on PK, PD</td>
</tr>
<tr>
<td></td>
<td>(CRMPack)</td>
<td>• In line with the recent EMA Guideline recommendations[2]</td>
</tr>
<tr>
<td>Requirements</td>
<td>• Define priors on dose-DLT</td>
<td>• Define priors on dose-exposure DLT rate</td>
</tr>
<tr>
<td></td>
<td>rate</td>
<td>• population PK model developed at time of protocol set up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Team agility, PK bioanalysis and data availability</td>
</tr>
</tbody>
</table>

Next steps
- Quantify the gains of ED-EWOC as compared to EWOC:
 - non-linear PK, large PK variability
- Expand ED-EWOC methodology to PD biomarker to find safe pharmacology active doses
- New application to any other type of dose finding trials

Doing now what patients need next
From Cohort 3 (2.5mg) to Cohort 4 (2.75mg): dose recommendation with ED-EWOC

Recommended dose: 2.75mg as next recommended dose
EWOC dose escalation on a monotherapy study vs. ED-EWOC dose recommendation: An overview

Cohort 0
- Dose: 1mg
- 2 Pats, 0 DLT
- AUC: 8000 pg.hr/mL

Cohort 1
- Dose: 2.5mg
- 3 Pats, 2 DLT

Cohort 2
- Dose: 4.75mg
- 3 Pats, 2 DLT

Cohort 3
- Dose: 2.5mg
- 2 Pats, 0 DLT
- AUC: 9000 pg.hr/mL

Cohort 4
- Dose: 3.25mg
- 3 Pats, 1 DLT
- AUC: 9000 pg.hr/mL

Cohort 5
- Dose: 3.25mg
- 4 Pats, 1 DLT
- AUC: 8500 pg.hr/mL

Rec. Dose
- 3mg
- AUC: 9000 pg.hr/mL

Stop!
- Recommended dose: 3.25mg

Pop PK model update
- two compartment model
- zero order absorption
- linear clearance
- two compartment model
- 1st-order absorption
- non-linear clearance

Fit
Exposure driven EWOC is an iterative adaptive process

Treat a cohort of patients at recommended Dose (RD) and get data:
• Nb. DLT-evaluable pts at current dose,
• Nb. DLT
• Concentrations in blood

Informed decision by investigators on next dose

Stop trial and declare MTD

- Check stopping rules
- Apply safety rules
- Assess new RD

Update Dose - Exposure relationship
PopPK analysis

Update Exposure-DLT rate relationship based on DLT data for evaluable patients

Compute integrated dose-DLT rate relationship
Get predictive probability of DLT

Stop trial and declare MTD
Operational considerations

Data collection and analysis flow

- The amount of information available varies between patients, due to time required for PK analysis and data review.

- PK data from previous cohorts inform the pop PK model as dose escalation proceeds.
From Cohort 3 (2.5mg) to Cohort 4 (2.75mg): dose recommendation with ED-EWOC

<table>
<thead>
<tr>
<th>Cohort</th>
<th>PT Id</th>
<th>DOSE (mg)</th>
<th>AUC (pg.h/mL)</th>
<th>DLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1342</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2968</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2.5</td>
<td>5236</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2.5</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2.5</td>
<td>6203</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2.5</td>
<td>6365</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4.75</td>
<td>27350</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4.75</td>
<td>15171</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4.75</td>
<td>11496</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>2.5</td>
<td>8751</td>
<td>0</td>
</tr>
</tbody>
</table>

Integrated Dose-DLT rate

- **Recommended dose:** 2.75mg
- **Recommended AUC:** 8500pg.h/mL

- **Overdosing**
 - AUC=2000pg.h/mL
 - DLT rate

- **Targeted toxicity**
 - AUC=1500pg.h/mL
 - DLT rate

- **Under dosing**
 - AUC=1000pg.h/mL
 - DLT rate

Predicted AUC (pg.h/mL)

Dose (mg)
Doing now what patients need next