Experiences with development of antibody-based antiviral drugs

Qin Sun, Ph.D.
Office of Clinical Pharmacology (OCP), Division IV
Office of Translational Sciences (OTS)
Center for Drug Evaluation and Research (CDER), FDA

ASCPT 2019 Annual Meeting
- from molecule to patient
3/16/2019
Disclaimer

- The presentation reflects the views of the author and should not be construed to represent the FDA’s views or policies.

- The mention of commercial products in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the FDA.
Agenda

➢ **Background:** viral infections

➢ **Antiviral mAbs:**
 - approved
 - under development (*based on publicly available data and not a complete list*)

➢ **Clinical pharmacology related opportunities and challenges**
 - Fc-based \(t_{1/2} \) enhancing strategy: in vitro and in vivo
 - mAb PK in patients with organ impairment

➢ **Conclusions**
Background: viral infections

- **CMV** (cytomegalovirus): causes serious disease in immunocompromised patients; some anti-CMV small molecules (SMs) associated with neutropenia or nephrotoxicity

- **HBV** (hepatitis B virus): no functional cure; multiple SMs approved

- **HCV**: virologic cure after treatment with direct-acting antivirals for 8 to 12 weeks

- **HDV**: higher rate of progression than other hepatitis and only occurs in HBV co-infected patients; no approved drug

- **HIV-1** (human immunodeficiency virus-1): no functional cure; ibalizumab and SMs: NRTI (nucleoside reverse transcriptase inhibitor), NNRTI, PI (protease inhibitor), INI (integrase inhibitor), EI (entry inhibitor)
Background: viral infections

➢ **Influenza**: influenza A involved in pandemics; no approved drug for hospitalized patients with influenza infections

➢ **RSV** (respiratory syncytial virus): aerosolized ribavirin approved for treatment but not widely used; **palivizumab** for prevention of RSV in children at high risk

➢ **Others** (clinical efficacy studies challenging, not possible for Smallpox):
 - Ebola, Zika, Dengue, Smallpox, Rabies, etc.
 - If clinical efficacy studies are not ethical/feasible, approval may rely on animal efficacy models.
 - Guidance for Industry: Product Development Under the Animal Rule

Note: not a complete list for all viral infections
Antiviral mAbs: approved

- **Synagis® (palivizumab)**
 - Approval year: 1998
 - MOA (mechanism of action): RSV F protein inhibitor
 - Indication: prevention of RSV in pediatric patients at high risk
 - Dose regimen (intramuscular): 15 mg/kg monthly throughout the RSV season (5 doses)

- **Trogarzo® (ibalizumab)**
 - Approval year: 2018
 - MOA: CD4-directed post-attachment HIV-1 inhibitor
 - Indication: treatment of HIV-1 infection in adults with multidrug resistance, in combination with other antiretrovirals
 - Dose regimen (intravenous): a single loading dose of 2,000 mg followed by a maintenance dose of 800 mg every 2 weeks
Antiviral mAbs: under development

- publicly available data and not a complete list
- does not include products discontinued from development

<table>
<thead>
<tr>
<th>Indication</th>
<th>mAb</th>
<th>MOA</th>
<th>Development Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1</td>
<td>3BNC117/3BNC117LS</td>
<td>CD4 binding site of gp120</td>
<td>Phase II/Phase I</td>
</tr>
<tr>
<td></td>
<td>VRC01/VRC01LS</td>
<td>CD4 binding site of gp120</td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>VRC07-523LS</td>
<td>CD4 binding site of gp120</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>PGDM1400</td>
<td>V1V2 site of gp120</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>10-1074</td>
<td>V3 site of gp120</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>PGT121</td>
<td>V3 site of gp120</td>
<td>Phase I/II</td>
</tr>
<tr>
<td></td>
<td>10E8V/10E8VLS</td>
<td>membrane proximal external region (MPER) of gp120</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>PRO140</td>
<td>host CCR5 receptor</td>
<td>Phase III</td>
</tr>
<tr>
<td></td>
<td>10E8V2.0/iMab (bi-specific)</td>
<td>MPER/host CD4 binding site</td>
<td>Preclinical</td>
</tr>
<tr>
<td></td>
<td>SAR441236 (tri-specific)</td>
<td>CD4 binding site/MPER/V1V2 site of gp120</td>
<td>Phase I</td>
</tr>
</tbody>
</table>
Antiviral mAbs: under development

- publicly available data and not a complete list
- does not include products discontinued from development

<table>
<thead>
<tr>
<th>Indication</th>
<th>mAb</th>
<th>MOA</th>
<th>Development Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza</td>
<td>CT-P27</td>
<td>hemagglutinin (HA)</td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>MHAA4549A</td>
<td></td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>VIS140</td>
<td></td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>TCN-032</td>
<td>matrix 2 protein M2e</td>
<td>Phase II</td>
</tr>
<tr>
<td>RSV</td>
<td>MEDI8897</td>
<td>RSV F protein inhibitor</td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>ALX-0171 (nanobody, inhalation)</td>
<td></td>
<td>Phase II</td>
</tr>
<tr>
<td>Ebola</td>
<td>ZMapp (2G4/4G7/13C6)</td>
<td>Ebola virus glycoprotein</td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>REGN-EB3 (3470/3471/3479)</td>
<td></td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>mAb114</td>
<td></td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>MBP134 (ADI-15878/23774)</td>
<td></td>
<td>Preclinical</td>
</tr>
<tr>
<td>Rabies</td>
<td>CL184 (CR57/CR4098)</td>
<td>Rabies virus glycoprotein</td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>SYN023 (CTB011/CTB012)</td>
<td></td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>RAB-1</td>
<td></td>
<td>approved in India</td>
</tr>
</tbody>
</table>
Clinical pharmacology related opportunities and challenges

Fc-based t$_{1/2}$ enhancing strategy: in vitro and in vivo

- **Fc-based t$_{1/2}$ enhancing strategy:**

 A (N434A), AAA (T307A/E380A/N434A), LS (M428L/N434S), QL (T250Q/M428L), YTE (M252Y/S254T/T256E)

- **MEDI8897:**

 - Indication: prevention of RSV for all infants (IM, Phase II)

 - t$_{1/2}$ enhancing strategy: YTE modification

 - **In vivo:**

 t$_{1/2}$: 85-117 days in adults; 63-73 days in preterm infants once-per-RSV-season dose

 - **In vitro:**

 enhanced neonatal Fc receptor (FcRn) binding at pH 6.0

Clinical pharmacology related opportunities and challenges

Fc-based $t_{1/2}$ enhancing strategy: in vitro and in vivo

- Some Fc variants with improved FcRn binding at pH 6.0 in vitro do not exhibit increased $t_{1/2}$ in vivo.

- The $t_{1/2}$ enhancing effect depends on both increased FcRn binding at pH 6.0 and minimal effect on FcRn binding at pH 7.4:
 - underestimation of binding effect at pH 7.4
 - affinity threshold (KD: 860 nM) at pH 7.4 determining IgG recycling efficiency
 - increased FcRn binding at pH 7.4 beyond the threshold offsetting the benefits of increased binding at pH 6.0

Ref: J Biol Chem. 2015, 13, 290, 4282
Clinical pharmacology related opportunities and challenges

mAb PK in patients with organ impairment

- Renal impairment:
 FDA guidance: the clearance of therapeutic proteins (TPs) with MW<69 kDa may be affected by renal impairment (mAb MW: ~ 150 kDa)

- Hepatic impairment (HI):
 - FDA or EMA guidance: no information for biologics
 - 2013 paper by FDA researchers – Are HI studies necessary for TPs?
 7 TPs (only 3 mAbs) with HI information
 Results inconclusive due to limited data
 Ref: Clin Ther. 2013, 35, 1444

 - New research – Does HI affect PK of mAbs? (TPs with HI data after 2013)
 Almost no data for severe HI (n=0 or 1 for all)
 Limited data for moderate HI (4 mAbs/2 antibody-drug conjugates [ADCs] with n≥5)
 Sufficient data for mild HI (≈ 20 mAbs with n=tens to hundreds)
 Research team: Qin Sun, Shirley Seo, Simbarashe Zvada, Chao Liu, Kellie Reynolds
Clinical pharmacology related opportunities and challenges

mAb PK in patients with organ impairment

- **Hepatic impairment (HI):**
 - Significant exposure decrease for several mAbs or ADCs (mAb part):
 - *Ado-trastuzumab emtansine ADC*: ↓40%/70% in mild/moderate HI
 - *Evolocumab*: ↓40%/50% in mild/moderate HI
 - *Brentuximab vedotin ADC*: ↓35% in moderate HI (n=1 for mild/severe HI)
 - Trend for AUC decrease/lower albumin level associated with lower exposure for additional mAbs
 - Potential mechanisms:
 - factors affecting FcRn binding (endogenous IgG level), target-mediated drug disposition (TMDD), FcγR binding, etc.
 - HI may impact the disposition of mAbs (or ADCs [mAb part])
 - Additional data are needed, particularly for moderate/severe HI
Conclusions

➤ Antiviral mAbs:
 generally safe, long half-life (up to 3 to 4 months), less frequent dosing, good neutralization potency/breadth, increased resistance barrier (bi-, tri-, or multi-domain mAbs), minimal DDI concern

➤ Multiple clinical pharmacology related challenges:

- Fc-based t_{1/2} enhancing:
 balance FcRn binding at both pH 6.0 and 7.4
 no compromised efficacy and no increased immunogenicity

- mAb dose selection:
 Specific population: patients with hepatic impairment; pediatric patients; patients with different levels of viral load/target expression or immune deficiency

 Dose level/ratio for combination therapy (e.g., anti-HIV mAbs)

 Inhaled mAbs (e.g., anti-flu or anti-RSV) with minimal systemic exposure (PK/PD correlation challenging/infeasible)
Acknowledgements

• ASCPT organization committee
• Dr. John Lazor
• Dr. Kellie Reynolds
• Dr. Shirley Seo
• Dr. Debra Birnkrant
• Dr. Jeffrey Murray
• Dr. Yow-Ming Wang
• Dr. Sarah Schriebner
• Jennifer Ng, PharmD intern student, SUNY Buffalo
• Shiwei Fang, PharmD intern student, University of Michigan