Catching a Glimpse of Gut Microbiome-Drug Interactions: What Clinical Pharmacologists Need to Know

Co-Chairs: Sook Wah Yee, PhD & Eugene Chen, PhD
The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism

Peter Spanogiannopoulos, Elizabeth N. Bess, Rachel N. Carmody and Peter J. Turnbaugh

Microbiota–drug interactions: Impact on metabolism and efficacy of therapeutics

Ellen M. Wilkinsona,b,1, Zehra Esra Ilhana, Melissa M. Herbst-Kralovetza,c,*

How to Determine the Role of the Microbiome in Drug Disposition

Jordan E. Bisanz, Peter Spanogiannopoulos, Lindsey M. Pieper, Annamarie E. Bustion, and Peter J. Turnbaugh

Drug pharmacocmicrobiomics and toxicocmicrobiomics: from scattered reports to systematic studies of drug–microbiome interactions

Siri, What Should I Eat?

Reiner Jumpertz von Schwartzenberg1,2 and Peter J. Turnbaugh1,*

Ramy K. Aziz, Shaimaa M. Hegazy, Reem Yasser, Mariam R. Rizkallah & Marwa T. ElRakaiby
Objectives

• Describe the mechanisms by which gut microbes may alter drug absorption and elimination.

• Give at least two examples of bacteroides responsible for modulating drug efficacy and toxicity and two examples of drugs that will alter gut microbiome.
Libusha Kelly, Ph.D., Albert Einstein College of Medicine
@microbegrrl

Kathy Giacomini, Ph.D., University of California San Francisco, CA
@pgrnhub @ucstanfordcersi

Lei Zhang, Ph.D., Silver Spring, MD
Take Home Messages
• There is no known bioequivalence (BE) study failure that are attributed to gut microbiome interactions.
• Drug developers need to understand gut microbiome interaction to ensure their products pass BE study.

• Excipients can inhibit BCRP and OATP2B1 and that can affect drug absorption/bioavailability.
• Gut microbiome can reduce azo compound that can mitigate the inhibitory effect.

• Gut microbiome can activate or inactivate drug. This can be due to variability in composition of the gut microbiome.
 • E.g. irinotecan

• Excipients can inhibit BCRP and OATP2B1 and that can affect drug absorption/bioavailability.
• Gut microbiome can reduce azo compound that can mitigate the inhibitory effect.

• There is no known bioequivalence (BE) study failure that are attributed to gut microbiome interactions.
• Drug developers need to understand gut microbiome interaction to ensure their products pass BE study.