Retrospective Analysis Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation Offers Improvements in Efficiency in the Design of Volunteer Infection Studies for Antimalarial Drug Development

*Kayla Ann Andrews, PharmD, PhD

*Employee of Cognigen Corporation at the time this work was performed.
Antimalarial Drug Development

- 2018 World Malaria Report shows stall in progress towards eradication
- Current tools save millions of lives, but disease burden remains high

New Drugs
- artefenomel

New Tools & Technologies
- Parasite Inoculation
- Clinical trial design
-Transfusion studies in healthy volunteers
- Induced blood stage malaria infection in healthy volunteers
- PK/PD parameter estimates and design for Phase 2 trials for dose selection and study design
- Use of quantitative PCR

Strengthened Use of Data

Integrated clinical trial design with PK/PD modeling and simulation
Goal: Investigate if an alternate design with a multiple-dose-level single cohort, paired with PK/PD modeling and simulation could offer improvements in efficiency of the design of VIS for antimalarial drug development.

Proof-of-Concept Multi-Dose Cohort

VIS Study Design

Traditional
- Cohort 1
 - n = 8
 - low dose
- Cohort 2
 - n = 8
 - mid-level dose
- Cohort 3
 - n = 8
 - high dose

2-2-4 Adaptive
- n = 2 low dose
- n = 2 mid-level dose
- n = 4 high dose

Objectives

- Generate multi-dose initial cohort
- Develop PK/PD model for initial cohort
- Simulate range of doses in Phase 2 trial from PK/PD model
- Compare simulations to observed Phase 2 trial data
Methods: 2-2-4 PK/PD Model

Pharmacokinetic Model
- 2- and 3-compartment models were tested
- PK and PD were modeled sequentially

Pharmacodynamic Model
- Parasite growth and net parasite growth were evaluated with linear, logistic, and Gompertz-type functions
- Drug effect was evaluated with maximum pharmacologic effect (E_{max}) model, as well as with E_{max} model with an indirect response component
Results: 2-2-4 PK/PD Model
500 replicates of IBSM study with single dose cohorts (for example, 200, 400, 800, and 1200 mg) with 8 patients per cohort

- Body weight values were simulated based on body weight distribution from full IBSM study
- Unique baseline parasite was assigned to each patient ID by randomly selecting from distribution of baseline parasite counts from two phase 2 trials

- Cure versus recrudescence
 - Simulated data were censored where if a patient’s individual predicted parasite count was ≤ 0.003 parasites/mL, patient was considered to be “cured”
 - If patients were not cured, they were considered to have “recrudesced”

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Cohort Information</th>
<th>Drug Dosing</th>
<th>Parasite Information</th>
<th>Rescue Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 2</td>
<td>Cohort 1: n = 10</td>
<td>Cohort 1: 800 mg</td>
<td>Patients presented with symptomatic malaria and 5,000 to 50,000 parasites/uL (Plasmodium falciparum) - detected with microscopy LLOQ ~10,000 to 100,000 parasites/mL</td>
<td>Definitive treatment given after 72 hours postdose of artefenomel, or earlier if deemed clinically necessary</td>
</tr>
<tr>
<td></td>
<td>Cohort 2: n = 10</td>
<td>Cohort 2: 400 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cohort 3: n = 9</td>
<td>Cohort 3: 200 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cohort 4: n = 11</td>
<td>Cohort 4: 1200 mg (all oral suspension in fed condition)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: 40*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Patients who presented with *Plasmodium vivax* malaria were excluded from the comparison
2-2-4 design allowed for characterization of dose-response relationship after administering drug to only 8 patients in 1 cohort

Inclusion of 3 doses in first cohort allows for early estimation of key PD parameters (for example, E_{max} and E_{C50}) using data with wider dynamic range, which would typically be impossible from 1 dose cohort in typical IBSM study
Conclusions and Prospectus

• Impact
 • Work is part of larger effort to integrate modeling and simulation into iterative study designs

• Future / Ongoing Work
 • Statistical powering of future cohorts
 • Parameter identifiability
 • Repeat with second drug
 • Multiple stochastic random draws of “initial cohort”

Acknowledgements

Nathalie Gobeau, PhD | Director, Pharmacometrics, MMV
James McCarthy, MD | Senior Scientist & Infectious Diseases Physician, QIMR Berghofer Medical Research Institute
Jörg Möhrle PhD, MBA | Vice President, Head of Translational Medicine, MMV
Steve Kern, PhD | Deputy Director, Quantitative Sciences, BMGF
Ping Zhao, PhD | Senior Program Officer, Quantitative Sciences, BMGF
David Wesche, MD, PhD | Vice President, Integrated Drug Development, Certara
Mike Dodds, PhD | Executive Director, Integrated Drug Development, Certara
Ted Grasela, PharmD, PhD | President, Cognigen Corporation
Jill Fiedler-Kelly, MS, FISoP | Vice President, Pharmacometric Services, Cognigen Corporation
Joel Owen, PhD | Vice President, Strategic Modeling & Simulation, Cognigen Corporation
Luann Phillips, MS | Distinguished Scientist, Cognigen Corporation