Integration of placenta transfer in a physiologically based pharmacokinetic model to characterize acetaminophen exposure and metabolic clearance in the fetus

Paola Mian PharmD
Pharmacist-researcher, Clinical pharmacologist

K. Allegaert, S. Conings, P. Annaert, D. Tibboel, M. Pfister, K. van Calsteren, J. van den Anker, A. Dallmann
80% of pregnant women use at least 1 drug during pregnancy\(^1\)

Fetus (probably) exposed to any drug taken by mother

Physiologically-Based Pharmacokinetic modelling (PBPK) valuable tool for predicting fetal drug exposure and metabolism

\(^1\)Pisa FE et al. BMC Pregnancy Childbirth 2015
Introduction (2): Acetaminophen

60% of pregnant women take acetaminophen (paracetamol) at least once during pregnancy\(^1\)

Little is known about acetaminophen PK after therapeutic dosing and potential toxicity in fetus

Safety issues after perinatal acetaminophen exposure\(^2,3\)
- Neurodevelopment
- Pulmonary
- Infertility
- Ductus arteriosus

\(^1\) Nitsche JF et al. Am J Perinatol 2016, \(^2\) McGill MR J of Clin Inves 2012, \(^3\) Allegaert K BJCP 2018
Introduction (2): Acetaminophen1,2

1Flint RB et al. Ther Drug Monit. 2017, 2Mian P et al. Drugs & Aging 2018

CYP = cytochrome-P-450, GSH = Glutathion, NAPQI = N-acetyl-p-benzoquinone imine, SULT = Sulfotransferase, UGT = UDP-glucuronosyltransferase
Aims

Develop a fetal-maternal physiologically based pharmacokinetic (f-m PBPK) model to:

1. Quantitatively predict and evaluate placenta transfer of acetaminophen in term fetus
 - Ex vivo cotyledon perfusion experiment
 - Caco-2 cell permeability
 - Physicochemical properties [MoBi® default method]

2. Quantitatively predict contribution of different metabolic pathways of acetaminophen in the fetus to total metabolic clearance
Methods (1): Schematic PBPK & ex vivo cotyledon model

\[\text{Dcot} = \text{diffusion (cotyledon)}, \quad \text{Dpl} = \text{diffusion placenta}, \quad \text{f= fetal, K_{f,m} = partition coefficient, Kpe = placental elimination, IV= intravenous, m=maternal, p= placenta, PBPK= physiologically based pharmacokinetic, PK= pharmacokinetic, phys-chem= physicochemical, Q= flow rate, V= volume} \]
Methods (2): Schematic f-m PBPK model

Enzym expression in the term fetus

SULT1A1/3 1-5
6.5 fold adult value

UGT1A1 6,7
0 % of adult value

CYP2E1 8-10
• 16% of adult value

CYP= cytochrome-P-450, f-m PBPK= fetal-maternal physiologically based pharmacokinetic, SULT= sulfotransferase, UGT=Uridine 5’-diphospho-glucuronosyltransferase
Results (1): Placenta transfer parameters & predicted maternal and fetal acetaminophen profiles

<table>
<thead>
<tr>
<th></th>
<th>D_p (mL/min)</th>
<th>K_{fm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex vivo ¹</td>
<td>403</td>
<td>0.737</td>
</tr>
<tr>
<td>Caco-2 ²</td>
<td>4354</td>
<td>1</td>
</tr>
<tr>
<td>Mobi® default</td>
<td>3528</td>
<td>1</td>
</tr>
</tbody>
</table>

$D_p =$ placental transfer rate (permeability)

$K_{fm} =$ partition coefficient

Results (2): Median fractions of metabolite formation from acetaminophen

Fetus

Mother

NAPQI = N-acetyl-p-benzochinonimine
Conclusions

• F-m PBPK model adequately predict maternal and fetal PK profiles in term fetus

• Acetaminophen exposure was similar between mother and fetus

• Prediction of formation clearance in fetal liver of sulphate and NAPQI were 0.8% and 0.06% respectively

Limitations

• Contradictory information is known on CYP2E1 expression in fetus at term

Future perspectives

• In vivo validation of metabolite formation clearance predictions

CYP = cytochrome-P-450, F-m PBPK = fetal-maternal physiologically based pharmacokinetic, NAPQI = N-acetyl-p-benzochinonimine