Eculizumab Dosing Strategies in Pediatric Patients with Stem Cell Transplant-Associated Thrombotic Microangiopathy (TA-TMA): PK/PD Model based assessment

Kana Mizuno, PhD¹, Sonata Jodele, MD², Bradley P. Dixon, MD³, Thelma Kathman⁴, Mary Block⁵, Ashley Teusink, PharmD, MBA, BCPS⁶, Ralph A. Gruppo, MD⁵, Stella M. Davies, MBBS, PhD, MRCP⁷,⁸, Alexander A. Vinks, PharmD, PhD, FCP¹,⁸, Tsuyoshi Fukuda, PhD¹,⁸

¹ Division of Clinical Pharmacology, ⁴ Nephrology and Hypertension, ⁵ Hematology, ⁶ Pharmacy, ⁷ Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH ² Clinical Pediatrics, University of Southern California, Los Angeles, CA ³ Pediatric Nephrology, University of Colorado School of Medicine and Children's Hospital Colorado, CO ⁸ Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
Poor survival of stem cell transplant-associated thrombotic microangiopathy (TA-TMA)

- A severe post-transplant complication with high-risk of death
- Multifactorial disease with a 20-30% incidence in stem cell recipients
- Low survival rates with conventional treatments such as plasma exchange, defibrotide, and/or rituximab
- **Key for survival** of high-risk TA-TMA is early intervention before severe multi-organ endothelial injury occurs.

Poor survival in patients with TA-TMA

<table>
<thead>
<tr>
<th>Time from HSCT (month)</th>
<th>Probability of survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>20</td>
<td>0.8</td>
</tr>
<tr>
<td>40</td>
<td>0.6</td>
</tr>
<tr>
<td>60</td>
<td>0.4</td>
</tr>
<tr>
<td>80</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Anti-C5 monoclonal antibody Eculizumab for TA-TMA

- **Mechanism of action:**
 A monoclonal antibody (mAb) targeting complement C5

- **Indications:**
 Paroxysmal Nocturnal Hemoglobinuria (PNH)
 Atypical Hemolytic Uremic Syndrome (aHUS)

- **Recommended dose**

<table>
<thead>
<tr>
<th>Body weight</th>
<th>Induction dose</th>
<th>Maintenance dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 40kg</td>
<td>900 mg weekly</td>
<td>1200 mg biweekly</td>
</tr>
<tr>
<td>30 - ≤ 40kg</td>
<td>600 mg weekly</td>
<td>900 mg biweekly</td>
</tr>
<tr>
<td>20 - ≤ 30kg</td>
<td>600 mg biweekly</td>
<td></td>
</tr>
<tr>
<td>10 - ≤ 20kg</td>
<td>300 mg weekly</td>
<td>600 mg biweekly</td>
</tr>
<tr>
<td>5 - ≤ 10kg</td>
<td>300 mg biweekly</td>
<td>300 mg biweekly</td>
</tr>
</tbody>
</table>

- **Cost:**
 $6,143 or more for 1 vial (300 mg)

Big challenges with eculizumab dosing

- Large “between” and “within” patient variability in PK is observed!
- Current dosing strategies need to be optimized!

PK/PD guided-precision dosing promises to increase treatment success

Monitoring biomarkers for dose adjustment

<table>
<thead>
<tr>
<th>PK:</th>
<th>Eculizumab concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD:</td>
<td>sC5b-9 (soluble terminal complement complex): Indicator of disease severity</td>
</tr>
<tr>
<td></td>
<td>CH50 (total hemolytic complement activity): Indicator of the effectiveness of complement blockade by eculizumab</td>
</tr>
</tbody>
</table>

Purpose

• To characterize eculizumab PK and PD over the course of treatment

• To develop a population PK model as part of a precision dosing strategy considering target mediated disposition

• To develop an optimal dosing strategy using a model-based approach to achieve higher PK target attainment resulting in better outcomes
Methods

Sample collection
- Eculizumab serum concentrations: Once daily during induction therapy
- sC5b-9 monitoring: At least 3 times per week during therapy.

Population Pharmacokinetic Modeling
- NONMEM 7.2 with FOCE-I method
- Evaluated covariates: Body weight, sC5b-9 level, number of dosing cycles

Monte Carlo Simulations
Optimal dosing intervals to achieve high PK target attainment ($C_{\text{trough}}>100$ mg/mL) were explored based on the PK simulation using the developed model considering:
- Initial sC5b-9 burden (200-800 ng/mL)
- A cohort of representative patients (n=1,000; weight ranging from 3-80 kg)
Large eculizumab target mediated PK variability during treatment

Patient demographics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Number</th>
<th>Parameters</th>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>21</td>
<td>Time course available (weeks)</td>
<td>2 (0-25)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>384</td>
<td>Age (years)</td>
<td>4.8 (1.1-29.8)</td>
</tr>
<tr>
<td>Number of dose cycles</td>
<td>5 (2-23)</td>
<td>Body weight (kg)</td>
<td>15.0 (5.5-80)</td>
</tr>
<tr>
<td>Induction dose: 300 mg/600 mg/900 mg</td>
<td>4 / 10 / 7</td>
<td>Pre-treatment sC5b-9 level (ng/mL) (normal<244 ng/mL)</td>
<td>337 (131-1700)</td>
</tr>
</tbody>
</table>
Eculizumab PD marker changes in parallel with PK

Eculizumab Clearance (PK)

sC5b-9 Levels (PD)

Final Population PK Model

\[
CL = CLNL(\text{nonlinear}) + CLL(\text{linear})
\]

- \[CLNL = CLNL_{pop} \times \left(\frac{\text{predose} \text{S5b9}}{337} \right) \times e^{-\theta_{\text{dose}} \times (N_{\text{dose}}-1)} \times \left(\frac{WT}{70} \right)^{0.75} \]
- \[CLL = CLL_{pop} \times \left(\frac{WT}{70} \right)^{0.75} \]

PD marker change over the course of treatment
Population PK modeling and model validation

Final model
- CL=CLL (linear) + CLNL (non-linear)
 \[CL = C_{LL_{pop}} \cdot \left(\frac{WT}{70} \right)^{0.75} \]
 \[CLNL = C_{NL_{pop}} \cdot \left(\frac{\text{predoseC5b9}}{3.37} \right) \cdot e^{-0.75(N_{dose} - 1)} \cdot \left(\frac{WT}{70} \right)^{0.75} \]
- \(V_d = V_{d_{pop}} \cdot \left(\frac{WT}{70} \right)^{1.0} \)

Parameter	Mean (%RSE)
Fixed effects
\(C_{LL_{pop}} \) (mL/h/70kg) | 22.8 (17%)
Exponent of allometry for CL | Fixed to 0.75
\(V_{d_{pop}} \) (L/70kg) | 8.15 (8%)
Exponent of allometry for Vd | Fixed to 1.0
\(C_{NL_{pop}} \) (mL/h/70kg) | 40.5 (17%)
\(q_{NDose} \) | 0.20 (29%)

Inter-individual variability
\(\omega_{CL} \) (%CV) | 43.5% (27%)
\(\omega_{Vd} \) (%CV) | 25.3% (33%)
\(\omega_{IOV} \) (%CV) | 30.7% (17%)

Random residual variability
\(\epsilon_{prop} \) | 0.104 (14%)

88% CL variability

Unexplained 43%
Body weight 35%
sC5b-9 decrease 12%

43% CL variability

Observed concentration (µg/mL)
Population predicted concentration (µg/mL)
Individual predicted concentration (µg/mL)

Time after dose (hours)
Intensifying dosing scenarios for higher target attainment

Population PK Simulation

Current weekly dose regimen

Simulation 1
Weight: 6 kg
Dose: 300mg

Simulation 2
Weight: 20 kg
Dose: 600mg

Simulation 3
Weight: 40 kg
Dose: 900mg

Probability of target attainment (C_{trough} > 100 \, \mu g/mL)

Interval 2 days 4 days 7 days (current regimen)

Eculizumab concentration (\mu g/mL)

Time after first dose (days)

Dose intervals (days)

Probability of target attainment (%)
Conclusion

Our PK/PD model-based optimal dosing strategy indicated that eculizumab precision dosing with consideration of body weight and sC5b-9 levels will increase the probability of PK target attainment resulting in better outcomes.
Acknowledgements

Cincinnati Children’s Hospital Medical Center
Clinical Pharmacology
Tsuyoshi Fukuda, PhD
Alexander A. Vinks, PharmD, PhD, FCP

Bone Marrow Transplantation and Immune Deficiency
Stella M. Davies, MBBS, PhD, MRCP

Nephrology and Hypertension
Thelma Kathman

Hematology
Ralph A. Gruppo, MD
Mary Block

Pharmacy
Ashley Teusink, PharmD, MBA, BCPS

University of Southern California
Clinical Pediatrics
Sonata Jodele, MD

Patients and Families
All medical staff for patient care