Understanding Immune-Mediated Drug Toxicities: A Roadmap for Translation and Discovery

John A. Oates Chair in Clinical Research
Professor of Medicine and Pharmacology
Vanderbilt University Medical Center

Professor & Director
Centre for Clinical Pharmacology and Infectious Diseases
Institute for Immunology and Infectious Diseases
Murdoch University

ASCPT March 14, 2019: Applications of Immunopharmacogenomics
Disclosures

- Patent: Equity in IIID that has a patent for HLA-B*57:01 testing for abacavir hypersensitivity
- Provisional patent: testing for vancomycin hypersensitivity
Key Messages

- HLA associations with severe T-cell mediated adverse drug reactions
- Translational road map successes
- HLA associations have helped define mechanisms
- "Negative predictive gap"
 - Associations with many drugs/populations still to be defined
- "Positive predictive gap"
 - Why do only a small fraction of those carrying a risk allele develop disease
- HLA testing and its utility beyond screening
- What to look forward to
Classification of Adverse Drug Reactions

Case

- 48 year old woman otherwise healthy
- Donated blood and weeks later develops high fever and found to be bacteremic with E. coli and MRSA RUL infiltrate.
- Started vancomycin + levofloxacin
- 2 weeks later generalized rash, facial edema and fever
- Eosinophilia peak 1.7 and LFTs ALT 4 x ULN
- On high dose prednisone weaned over 5 months
Questions?

- What is the likely diagnosis?
- Is this drug related?
- Is there a most likely implicated drug and how you determine this?
- Can this be prevented or preempted?
- Would knowledge of genetic background help in the diagnosis?
Key Messages

- **HLA associations with severe T-cell mediated adverse drug reaction**
- Translational road map successes and implementation challenges
- Strong HLA associations have helped define mechanisms
- "Negative predictive gap"
 - Associations with many drugs/populations still to be defined
- "Positive predictive gap"
 - Why do only a small fraction of those carrying a risk allele develop disease
- HLA testing and its utility beyond screening
- What to look forward to
VARIATION IN HLA AND DISEASE ASSOCIATIONS

* Top Hit

1970s-2000s

- Autoimmune
- Cancer
- Infectious Diseases
- Neurology
- Drug Hypersensitivity

2002-present

- Malaria
- Leprosy*
- Narcolepsy*
- Celiac Disease*
- Primary biliary cirrhosis*
- Follicular Lymphoma*
- HBV Clearance*
- Abacavir Hypersensitivity
- Carbamazepine SJS/TEN
- Allopurinol DRESS/SJS/TEN
- Fluvoxacin DILI
- Nevirapine DRESS
- Dapsone Hypersensitivity
- Amoxicillin-clavulanate DILI
- Nevirapine Rash+hepatitis
- Azathioprine pancreatitis
- Amoxicillin-clavulanate DILI
- Nevirapine Rash+hepatitis
- Azathioprine pancreatitis

- Malaria/Cerebral Malaria
- HIV Control*
- Multiple Sclerosis*
- Parkinsons
- Ankylosing Spondylitis*
- Vitiligo*
- Psoriasis*
- Schizophrenia*
- Nasopharyngeal carcinoma*

- Carabamazepine MPE/DRESS/SJS/TEN
- Ticlopidine DILI
- Terbinafine DILI
- Vancomycin DRESS

1970s-2000s

- 1970s-2000s

2002-present
Key Messages

• Strong HLA associations with severe T-cell mediated adverse drug reaction
• **Translational road map successes**
 • Strong HLA associations have helped define mechanisms
 • "Negative predictive gap"
 – Associations with many drugs/populations still to be defined
 • “Positive predictive gap”
 – Why do only a small fraction of those carrying a risk allele develop disease
• Beyond – potential utility of HLA as adjunctive diagnostic test
• What to look forward to
HIV Drug Abacavir - HLA Translation “Death” of Hypersensitivity Syndrome

- 5-8% of patients developing fever, malaise and later rash average 8 days into treatment
- Symptoms disappear rapidly on stopping drug
- Hypotension, shock, death could occur rapidly on rechallenge
- Seen less commonly in those of non-European origin
- Warning card issued and used as clinical safety strategy until HLA-B*57:01 guideline based widespread screening
Key Messages

- Strong HLA associations with severe T-cell mediated adverse drug reaction
- Translational road map successes and implementation challenges
- **Strong HLA associations have helped define mechanisms**
- "Negative predictive gap”
 - Associations with many drugs/populations still to be defined
- “Positive predictive gap”
 - Why do only a small fraction of those carrying a risk allele develop disease
- Beyond – potential utility of HLA as adjunctive diagnostic test
- What to look forward to
December 2012

Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire

*Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610; 1Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109; 2Department of Chemistry, University of Florida, Gainesville, FL 32611; 3Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; 4Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; 5Brookhaven National Laboratory, Upton, NY 11973; 6Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and Center for Theoretical Biological Physics, University of California at Los Angeles, Los Angeles, CA 90095; 7National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72076; 8Department of Chemistry, University of Virginia, Charlottesville, VA 22901; and Institute for Immunology and Infectious Diseases, Murdoch University, Perth 6150, Australia

LETTER

Immune self-reactivity triggered by drug-modified HLA-peptide repertoire

Patricia T. Illing, Julian P. Vivian, Nadine L. Dudicic, Lyudmila Kostenko, Zhanjun Chen, Manohri Bhardwaj, John J. Mikolajczyk, Lars Kjer-Nielsen, Stephanie Gaus, Nicholas A. Williamson, Scott R. Burrows, Anthony W. Purcell, Jarrod Rossjohn, and James McCluskey

Abacavir alters repertoire of self-peptides presented to CD8+ T cells
In all HLA-B*57:01+
in the absence of CD4+ T-cell depletion dendritic cells remain in an immature state and there is tolerance to the altered peptide repertoire
Key Messages

• Strong HLA associations with severe T-cell mediated adverse drug reaction
• Translational road map successes
• Strong HLA associations have helped define mechanisms

• "Negative predictive gap”
 – Associations with many drugs/populations still to be defined
• "Positive predictive gap”
 – Why do only a small fraction of those carrying a risk allele develop disease

• HLA testing and its utility beyond screening
• What to look forward to
25.7 Million Africans Living with HIV

About 5000 new HIV infections (adults and children) a day | 2017

- About 66% are in sub-Saharan Africa
- About 500 are among children under 15 years of age
- About 4400 are among adults aged 15 years and older, of whom:
 - almost 43% are among women
 - about 33% are among young people (15–24)
 - about 19% are among young women (15–24)
Severe Immune Mediated ADRs are the Limiting Toxicity of Nevirapine

Nevirapine Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis in South Africa
HLA-C*04:01 is a Risk Allele for Nevirapine SJS/TEN
Key Messages

• HLA associations with severe T-cell mediated adverse drug reaction
• Translational road map successes
• Strong HLA associations have helped define mechanisms
• "Negative predictive gap"
 – Associations with many drugs/populations still to be defined
• "Positive predictive gap"
 – Why do only a small fraction of those carrying a risk allele develop disease
• HLA testing and its utility beyond screening
• What to look forward to
HLA: Global Implications for Translation

<table>
<thead>
<tr>
<th>Drug</th>
<th>HLA Allele</th>
<th>Population</th>
<th>OR</th>
<th>PPV</th>
<th>NPV</th>
<th>Number to test to prevent 1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir</td>
<td>B*57:01</td>
<td>European &<1% Africa/Asia</td>
<td>960</td>
<td>55%</td>
<td>100%</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td>0.14%</td>
<td></td>
<td>14000</td>
</tr>
<tr>
<td>Abacavir SJS/TEN</td>
<td>B*15:02</td>
<td>Southeast Asian &<1% European &<1% African</td>
<td>>1000</td>
<td>3%</td>
<td>variable</td>
<td>1000</td>
</tr>
<tr>
<td>Dapsone</td>
<td>B*13:01</td>
<td>East Asians &0% Europeans &0% African</td>
<td>20</td>
<td>7.8%</td>
<td>variable</td>
<td>84</td>
</tr>
</tbody>
</table>

*in populations of high prevalence
Not all patients with an HLA risk allele develop disease “Positive Predictive Gap”

Abacavir Hypersensitivity Syndrome

55% of HLA-B*57:01

Allopurinol DRESS or SJS/TEN*

3% of those carrying HLA-B*58:01

*Drug reaction with eosinophilia and systemic symptoms
Stevens-Johnson syndrome/toxic epidermal necrolysis
Drug Interacts with HLA Protein on Antigen Presenting Cell which Activates T cells

keratinocyte

peptide

carbamazepine

TCR

CD8+ T-cell

APC

HLA-B*15:02

peptide

oxypurinol

TCR

CD8+ T-cell

APC

HLA-B*58:01

peptide

TCR

CD8+ T-cell
Role of Antigen Processing in HLA-C*04:01 Carriers

- Altered trimming activity
- HLA-B*27+ spondyloarthropathies

86% of C*04:01 SJS/TEN versus 6.1% of C*04:01+ NVP tolerant

P<0.001
Nevirapine HLA-C*04:01 Implementation Considerations

1000 patients starting on nevirapine

100 would carry C*04:01+rs27044C

5 would develop nevirapine SJS/TEN

Therefore 100 needed to screen to prevent one case of NVP SJS/TEN
Key Messages

• Strong HLA associations with severe T-cell mediated adverse drug reaction
• Translational road map successes
• Strong HLA associations have helped define mechanisms
• "Negative predictive gap”
 – Associations with many drugs/populations still to be defined
• “Positive predictive gap”
 – Why do only a small fraction of those carrying a risk allele develop disease
• HLA testing and its utility beyond screening
• What to look forward to
Case

- 48 year old woman otherwise healthy
- Donated blood and weeks later develops high fever and found to be bacteremic with E. coli and MRSA RUL infiltrate.
- Started vancomycin + levofloxacin
- 2 weeks later generalized rash, facial edema and fever
- Eosinophilia peak 1.7 and LFTs ALT 4 x ULN
- On high dose prednisone weaned over 5 months
Drug Rash with Eosinophilia and Systemic Symptoms

<table>
<thead>
<tr>
<th>ACUTE</th>
<th>Weeks to years</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fever</td>
<td></td>
</tr>
<tr>
<td>• Facial edema</td>
<td></td>
</tr>
<tr>
<td>• Extensive rash (>50% BSA)</td>
<td></td>
</tr>
<tr>
<td>• Organ (liver, kidney)</td>
<td></td>
</tr>
<tr>
<td>• Hematology (eosinophilia, atypical lymphocytosis)</td>
<td></td>
</tr>
<tr>
<td>• Lymphadenopathy</td>
<td></td>
</tr>
<tr>
<td>• Supportive pathology</td>
<td></td>
</tr>
<tr>
<td>• EBV/CMV/HHV-6 reactivation</td>
<td></td>
</tr>
<tr>
<td>• Relapse</td>
<td></td>
</tr>
<tr>
<td>• Autoimmune thyroiditis</td>
<td></td>
</tr>
<tr>
<td>• Other autoimmune manifestations (lupus, diabetes)</td>
<td></td>
</tr>
</tbody>
</table>

10% Mortality secondary to organ failure or complications of immunosuppression
Drug Reaction with Eosinophilia and Systemic Symptoms

• What is the most likely drug?

Drug timeline

Levofloxacin--------------------------
Facial Edema
Fever Rash Transaminitis

Vancomycin--------------------------
Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
• Can this reaction be prevented or preempted?
• Could knowledge of genetics help in causality assessment in DRESS occurring on multiple antibiotics
8 cases out of 174 both met criteria (RegiSCAR ≥ 4 for DRESS and had DNA or typing available)

-6/8 carried the same HLA class I allele; this same allele present in <7% of population
Vancomycin DRESS: Prospective Study

• Three centers (VUMC, Institute for Immunology & Infectious Diseases (Perth Hospitals) and Austin Hospital (Melbourne)
• Adults developed DRESS 2009-2018
• RegiSCAR criteria probable >4 and Naranjo >5
• PBMCs, DNA and skin collected
• HLA ABC DR DQ DP typing on all cases
• \(\gamma \)-interferon ELISpot done on all cases acutely, follow-up, multiple time points when possible to all possible implicated drugs
8 cases met RegiSCAR/Naranjo Criteria

15 cases had been enrolled in prospective study meeting RegiSCAR/Naranjo criteria where one of implicated drug was vancomycin

91% on multiple antibiotics at the time of DRESS

14/15 had ELISpot done and 12/14 were positive for vancomycin

23 cases matched age, race and sex 2:1 with vancomycin tolerant controls from BioVu (with available imputed HLA typing) defined as ≥5 weeks of vancomycin with therapeutic trough levels
HLA-A*32:01 is Strongly Associated With Vancomycin DRESS

P= 1 x 10^{-8} conditional logistic analysis; Bonferroni control for multiple comparison

92% (11/12) of the Vancomycin ELISpot Positive Cases Carried the Risk Allele

*approximately 20% of patients carrying HLA-A*32:01 developed DRESS by 4 weeks

HLA-A*32:01 and Vancomycin DRESS Implications for Translation

- **SCREEN** – for emergent use not practical but DRESS latency >2 weeks

- **PREEMPT** – intervene early if patient at risk

- **DIAGNOSIS** – adds to causality (with clinical and functional assessments)
Key Messages

- HLA associations with severe T-cell mediated adverse drug reaction
- Translational road map successes and implementation challenges
- Strong HLA associations have helped define mechanisms
- "Negative predictive gap”
 - Associations with many drugs/populations still to be defined
- “Positive predictive gap”
 - Why do only a small fraction of those carrying a risk allele develop disease
- HLA testing and its utility beyond screening
- What to look forward to
HLA-B*58:01 + allopurinol SJS/TEN
Blister Fluid Clusters

- Inactivated T cells
- Dominant pathogenic clonotype
- CXCL13+ clonotype
- Monocytes, Langerhans cells, APCs
Granulysin as Biomarker for Earlier Diagnosis of SJS/TEN

Positive rapid granulysin test in child with vancomycin SJS/TEN

Lin et al Frontiers Pediatrics 2018:6

A New Era of Precision Drug Hypersensitivity

• The right drug to the right patient at the right time without drug safety concerns
• Not just prediction and prevention but early diagnosis and diagnosis
• Phenotypes, clinical diagnoses, mechanisms, risk stratification and treatment will increasingly be driven by what we find at a cellular and molecular level.
Acknowledgments

USA
Vanderbilt
Katherine Konvinse
Kristina Williams
Rama Gangula
Cosby Stone
Simon Mallal
Wyatt McDonnell
Katie White
Mark Pilkington
Spyros Kalams
Celly Wanjalla
Cindy Hager
Christian Warren
Dana King
Patricia Correia
Josh Denny
Dan Roden
Adi Bejan
Christian Shaffer
Yaomin Xu
Wei-Qi Wei
Drug allergy clinic
admin support and
nursing teams (VASAP)

AUSTRALIA
David Koelle
Lichen Jing
David Ostrov
Bjoern Peters
Jason Karnes
Elizabeth Ergen
Tom Beachkofsky
Clifton Dalgard
Misha Rosenbach
Rob Micheletti

EUROPE
Soren Buus

TAIWAN
Shuen-Iu Hung
WenHung Chung
Ren-You Pan

SOUTH AFRICA
Ranks Lehloenya
Jonny Peter
Sipho Diamini
Graeme Meintjes

CANADA
Brandon Worley
Jennifer Beecker
NATIENS study team
Bruce Carleton
Jacob Lee

Research Funding
1P50GM115305-01
R21AI139021
R34AI136815
R13 AR074889-01
National Health & Medical Research Council of Australia
Australian Centre for Hepatitis and HIV Virology Research

Angela Anderson Research Fund

Patients & families contributing to research