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• Background
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What is Machine Learning (ML)?

https://www.coursera.org/learn/machine-learning/home/welcome
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Machine Learning and Related terminology

Artificial 
Intelligence

Machine 
Learning

Artificial 
Neural 

Network

Deep 
Neural 

Network
≈

Deep 
Learning

The field of computer 
science dedicated to 
solving cognitive 
problems commonly 
associated with 
human intelligence, 
such as learning, 
problem solving, and 
pattern recognition.

https://aws.amazon.c
om/machine-
learning/what-is-ai/
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Types of Machine Learning

Machine Learning

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning

Semi-supervised 
Learning

Classification

Regression

Clustering

Reward based learning 
on how to act in certain 

environment
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Machine Learning Algorithms

http://web.cs.ucla.edu/~shi.feng/Machine_Learning.html



9

The Potential Use of ML in Drug Development

Aggregating data, synthesizing information, seeking patterns and optimizing decisions

Understanding 
disease/targets

Generating/
evaluating drug 

candidate(s) 
and 

combinations

Improving trial 
design

Advancing 
precision 

medicine by 
improving 

diagnosis and 
treatment
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Examples of ML Submissions to the FDA

• ML-based diagnostic tools

• ML-based pharmacometrics analyses

• ML-based disease models as a drug development tool (randomization aid, 

patient enrichment, virtual control)

• ML to predict drug response based on baseline factors (e.g., genomic/ 

proteomic data) 

• ML applied to claims and electronic medical records  to identify drug 

abuse related problems in post marketing setting

• ML applied to imaging data to predict drug response
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Examples of Use of Machine Learning at the FDA

• Resource allocation
– Prediction of workflow

• Review and research
– Machine-learning-based quantitative structure-activity relationship 

(QSAR)
– Investigation of AI/ML in the interpretation of adverse event reports
– Pharmacometric/statistical analyses

• Covariate identification
• Exposure-Response analyses

– Imaging data and precision medicine
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Prediction of the first ANDA Submission for New 
Chemical Entities (NCEs) Utilizing ML Methodology

• Objectives: Prioritize research efforts, product-specific guidance (PSG) 
development and resource allocation

• Formulate the prediction question: 

• Methods of analysis:
– Cox regression model 
– Machine-learning based method: Random Survival Forest (RSF)

• Results and Conclusions:
– The RSF model outperforms the Cox regression model in prediction. 
– This approach can be expanded to other prediction tasks, e.g., predicting the 

number of ANDAs submitted. 
https://www.fda.gov/downloads/Drugs/NewsEvents/UCM582150.pdf
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Investigation of AI/ML in the Interpretation of Adverse 
Event Reports

– To investigate the ability of NLP/ML techniques to assess safety reports 
received in FAERS and VAERS

– To ensure efficient triage to FDA reviewers, potentially leading to better 
safety surveillance and improved protection of public health.

https://www.fda.gov/downloads/Drugs/NewsEvents/UCM621740.pdf
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Identifying Predictors for All-Cause Mortality in 
Diabetic Patients in the ACCORD Trial Using RSF
• Background: The ACCORD trial was terminated early due to an unexpected increase 

in mortality with intensive vs. standard glucose-lowering treatment.
• Methods:

– A total of 240 variables including demographic, clinical and laboratory data, and 
their change from baseline during follow-up, were analyzed as potential 
predictors of mortality, using RSF.

– The top 20 predictors, identified by RSF, were included in a Cox proportional 
hazards model with stepwise selection to validate the results.

• Conclusion:
– Some markers (e.g., urinary biomarkers, loop diuretic use and age) emerged as 

important predictors of mortality. 
– RSF is a rapid and flexible approach to identify potential outcome predictors 

among a large number of variables. 
https://www.ahajournals.org/doi/abs/10.1161/circ.136.suppl_1.18043
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Exposure Response Analysis 
using Machine Learning 

A simulation study

Slide curtesy of Dr. Chao Liu
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Question: How do we know if further efficacy could be 
achieved by increasing dose given data from only one dose 
level were available? 

Option A: Combining ML prediction & 
causal inference tools

Option B: Apply ML toolbox for 
approximating the ground truth

Estimate the causal effects of exposure on response in a highly nonlinear system  
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Option A: Combining ML Prediction & Causal Inference Tools
Inverse-Probability Weighting + Marginal Structural Model

Generate Weighted Population

• Association between confounders and exposure removed in the weighted 
samples

Inference on Causality

• Average treatment effects (ATE) estimated using marginal structural model 
(MSM)

Propensity Score Estimation

• Prediction problem
• Nonlinear with 

interactions
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Option B: Apply ML to Approximate the Ground Truth
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Simulation Study Conclusions

• In a strong nonlinear system, linear model may provide biased 
estimate on E-R relationship, even all confounders were 
adjusted

• Estimation of E-R relationship could be more robust with causal 
inference toolbox if machine learning was applied in its 
prediction steps

• Neural Network has the potential to recover the heterogeneous 
E-R relationships by approximating the ground truth
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Use of Machine Learning for Imaging Data to Advance 
Precision Medicine 
• Machine learning/computer vision is a great tool to unlock the power of imaging 

data
– Detection, characterization, staging of the disease
– Prediction and assessment of treatment response

• Progress has been made in the fields in radiomics and radiogenomics
• Opportunities:

– Incremental improvements to current practice
– New paradigms that did not exist before

• Examples:
– Novel metrics for response assessment
– Predictive imaging biomarkers for drug response
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A Radiomics Imaging Biomarker to Predict Response to 
Immunotherapy Agents
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A Proposal of Using Machine Learning and 
Imaging Data to Facilitate Precision Treatment

• Establish a platform/procedure for imaging data 
submission/storage at the FDA

• Combine imaging data with other data (e.g.., clinical data, liquid 
biopsy data)

• Develop algorithm(s) that can predict each patient’s response to 
treatment and support treatment decisions

• Seek industry and academia collaborators
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Challenges and Future Directions in the Application of ML 
in Drug Development
• The expectation needs to be fit-for-purpose and risk-based.
• Validation of the algorithms 
• Generalizability

– Issues with biased training data/underrepresented population (especially with high-
dimensional data)

– Training data should be unbiased and diverse/inclusive
– Methods need to be developed for performance guarantee

• Transparency/interpretability
– Black box nature of some algorithms
– Methods are being developed to improve interpretability

• Deep learning is data hungry
– ML+ Real world data (e.g., electronic medical records, patient-generated 

data/wearables)
– Data sharing/precompetitive collaboration
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FDA-Stanford/UCSF CERSI Machine Learning Fellowship  
(Recruiting now!)

• FDA-Stanford/UCSF CERSI machine learning fellowship  (Recruiting now!)
https://www.zintellect.com/Opportunity/Details/FDA-CDER-2019-0355

• Other opportunities: Harvard-FDA INFORMED Post-Doctoral Fellowship 
in Artificial Intelligence and Machine Learning
https://spark.adobe.com/page/5ehro94b1FpGv/

https://www.zintellect.com/Opportunity/Details/FDA-CDER-2019-0355
https://spark.adobe.com/page/5ehro94b1FpGv/
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