

University of California San Francisco

Controlling Tuberculosis: The Impact of of Adherence on Treatment and Drug Development

Rada Savic PhD Associate Professor, Dept. of Bioengineering and Therapeutic Sciences Div. of Pulmonary and Critical Care University of California San Francisco USA

4/1/2019

Disclosures:

- I receive funding from BMGF, NIH, UNITAID and CDC for TB-related research
- I serve as a paid consultant for WHO on various task forces related to TB Therapeutics and treatment guidelines
- I serve as a Scientific Advisor to TB Alliance, NGO
- I serve as a Scientific Advisor to Sanofi Aventis on TB Therapeutics
- I serve on Core Science Groups for TB Therapeutics in CDC and ACTG (NIH funded) Consortia

Tuberculosis: Global Scourge

Infectious disease that kills most people in the world

9.4 million cases, 1.8 million deaths/year

Most common cause of death in HIV-infected patients

1/3 of the world's population latently infected

Resistance is substantial (DR, MDR, XDR)

Current TB treatment (50 years old)

- Drug sensitive TB is treated for at least 6 months with 50-year-old drugs
- MDR-TB requires 9-24 months of highly toxic, poorly efficacious drugs

Treatment success globally

Africa

South-East Asia

Europe

Priority-Setting for Novel Drug Regimens to Treat TB An Epidemiologic Model.

Regimen characteristic	Values modeled for novel RS TB regimen
Efficacy	 Minimal: 94% Intermediate: 97% Optimistic: 99%
Barrier to resistance	 Minimal: 5% Intermediate: 0.8% Optimistic: 0%
Preexisting novel- regimen resistance	Minimal: 10% Intermediate: 3% Optimistic: 0%
Medical contraindications	Minimal: 11% Intermediate: 5% Optimistic: 0%
Duration	Minimal: 6 mo Intermediate: 4 mo Optimistic: 2 mo
Tolerability/ease of adherence	 Minimal: 0% Intermediate: 25% Optimistic: 50%

Emily A. Kendall Sourya Shrestha Ted Cohen Eric Nuermberger Kelly E. Dooley Lice Gonzalez-Angulo Gavin J. Churchyard Payam Nahid Michael L. Rich Cathy Bansbach Thomas Forissier Christian Lienhardt David W. Dowdy (2017) Priority-Setting for Novel Drug Regimens to Treat Tuberculosis: An Epidemiologic Model. PLOS Medicine 14(1): 2017

Target Regimen Profile- Drug-Sensitive TB

Target Regimen Profiles for TB

Treatment

Candidates: Rifampicin-susceptible, Rifampicinresistant and Pan-TB treatment regimens

World Health Organization

Priority attributes

- 2-4 month duration
- <u>></u>95% cure rate
- No requirement for lab testing for safety
- No drug interactions with first-line HIV drugs
- High barrier to emergence of resistance

Treatment Shortening Trials

TB ReFLECT

The NEW ENGLAND JOURNAL of MEDICINE

HOME ARTICLES & MULTIMEDIA ~

ISSUES - SPECIALTIES & TOPICS -

FOR AUTHORS - CME >

Next Issue

Table of Contents

	« Prev Issue				
FIND AN ISSUE	TABLE OF CONTENTS FOR				
	TABLE OF CONTENTS FOR				
y Volume and Issue	October 23, 201				

October 23, 2014 Vol. 371 No. 17

ORIGINAL ARTICLES

Four-Month Moxifloxacin-Based Regimens for Drug-Sensitive Tuberculosis

A Four-Month Gatifloxacin-Containing Regimen for Treating Tuberculosis

C.S. Merle and Others Free Full Text

High-Dose Rifapentine with Moxifloxacin for Pulmonary Tuberculosis

One approach to improving tuberculosis therapy is to shorten the duration from 6 months to 4 months. In this trial in over 1900 patients with smear-positive tuberculosis, **two 4-month moxifloxacin-based regimens did not perform** as well as the standard 6-month regimen.

Shortening treatment regimens for tuberculosis may help control the disease. In this trial, patients with tuberculosis in sub-Saharan Africa received either a 4-month gatifloxacin-based regimen or the standard 6-month regimen. The gatifloxacin regimen **was less effective**.

In this report from sub-Saharan Africa, a 4-month regimen of moxifloxacin and rifapentine for pulmonary **tuberculosis was not as beneficial as two 6-month regimens**, and the benefits of a 6-month regimen based on rifapentine were similar to those of the standard 6-month regimen.

TB-ReFLECT: TB Re-Analysis of FluoroquinoLone Clinical Trials

Critical Path to TB Drug Regimens

BILL& MELINDA GATES foundation

- Individual Level Patient Meta Analysis (n=3709)
- Aimed to:
 - Identify patient groups eligible for 4 month treatment
 - Profile "hard-to-treat" patient populations
 - Identify drug-specific factors predicted of unfavorable response
 - To provide data-driven evidence for immediate impact on TB treatment implementation
- Findings validated in an independent dataset (Johnson, et al., TBRU trial)
- ¹⁰ Imperial MZ, et al, A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis., Nat Med. 2018 Nov;24(11):1708-1715.

Trials and Adherence Designs

×

×

22

Standard-of-Care, Adherence impact

Baseline characteristics, on treatment culture status, and adherence

Variable	No.unfavorable outcom No. of study participants				Hazard R	Ratio (95% CI)	
Adherence							
100%	70/824 (8)						Reference
> 90 and < 100%	23/192 (12)						1.8 (1.1 – 3.0)
<=90%	9/30 (30)						5.4 (2.5 – 11.5
HIV status							
Negative	75/884 (8)						Reference
Positive	27/162 (17)						3.0 (1.8 - 5.0)
Month 4 culture status							
Negative	84/951 (9)						Reference
Positive	18/95 (19)						2.4 (1.4 – 4.3)
Month 2 culture status							
Negative	62/800 (8)						Reference
Positive	40/246 (16)				1		2.1 (1.4 – 3.3)
Sex							
Female	21/304 (7)						Reference
Male	81/742 (11)						1.9 (1.1 – 3.1)
	←	0.5	1.0	2.0	5.0	10.0	
	I	Lower Risk		Higher Ri	sk		
eFLECT							

4-Month Regimens, Adherence impact

Baseline characteristics, on treatment culture status, and adherence

VariableNo.unfavorable outcomes/No. of study participants (%)		Hazard Ratio (9	Hazard Ratio (95% CI)			
Adherence						
100%	238/1348 (18)		Reference			
> 90 and < 100%	64/288 (22)		1.4 (1.0 – 1.9)			
<=90%	15/32 (47)		5.7 (3.3 - 9.9)			
Month 2 culture status						
Negative	212/1357 (16)		Reference			
Positive	105/311 (34)	■	2.2 (1.7 – 2.9)			
Sex						
Male	64/492 (13)	•	Reference			
Male	253/1176 (22)		1.6 (1.2 – 2.1)			
Smear grade						
Smear 0+ or 1+	53/388 (14)	•	Reference			
Smear 2+	72/430 (17)		1.2 (0.8 – 1.7)			
Smear 3+	192/850 (23)	∎	1.6 (1.2 – 2.3)			
HIV status						
Negative	270/1463 (18)		Reference			
Positive	47/205 (23)		1.5 (1.1 – 2.0)			
BMI (per 5 kg/m2 decrease)	†	₩	1.4 (1.1 – 1.7)			
Age (per 10 years increase)	†		1.1 (1.0 – 1.2)			
		0.5 1.0 2.0 5.0 10.	.0			

Unforgiveness

Adherence and 6/7 vs 7/7 Pill Counts

IN ADHERENCE, PATTERNS and TIMING MATTER Very different health outcomes are possible, indeed likely

Each of the 4 patients took 75% of prescribed doses during a 3-month period

Adherence in Continuation Phase, SOC

Monthly Adherence, SOC

Patterns

Distribution of Monthly Missed Doses in Nonadherent patients: Non-random patterns drive the treatment failure

Non-random Patterns Drive the Treatment Failure

100 % Adherence 80-99% Adherence and Random patterns 80-99% Adherence and Non-Random patterns

PK Basics

Pharmacological Rationale for Impact of Clustering of Missed Doses

UCSF

Catalysis Biomarker Study

Predictors

Endpoints

Biomarkers for TB Cure

Adherence one of the best "biomarkers" of treatment failure

Hard-to-Treat Patients Benefit Most from Adherence Interventions

Cure TB Strategy with Adherence Intervention:

Clinical Trial Simulations, Pragmatic Trial with Adherence Intervention

Adherence and Forgiveness as Determinants of Efficacy vs Effectiveness and Clinical Trial Success

Summary

- Partial- or non-adherence is the rule, rather than the exception, in clinical trials and in the field
- HRZE is unforgiving regimen requiring large resources for optimizing adherence, but performing excellent in the trials
- The gap between efficacy and effectiveness is much larger than for the unforgiving drug versus a 'forgiving' drug
- Forgiveness of the drug should be factored in non-inferiority margin
- We will learn great deal from dosing history data collected with new devices

Thank you!

BILL& MELINDA GATES foundation

Data Contributors:

- TB Alliance
- St. George's, University of London
- WHO

27 TB ReFLECT

Case Western

TB ReFLECT steering committee:

- Christian LIENHARDT
- Debra HANNA
- David HERMAN
- Katherine FIELDING
- Patrick PHILLIPS
- Payam NAHID
- Carl MENDEL
- Gerry DAVIS
- Bob WALLIS
- John JOHNSON

UCSF team:

- Marjorie IMPERIAL
- William FOX
- Rada SAVIC
- Natasha STRYDOM
- Leah Jarlsberg
- Yusi CHEN

Catalysis team

Jill WINTER

Concentration (ng/mL) vs Time (days)

RM Savic^{1,2}, A Barrail-Tran^{3,4}, X Duval¹, G Nembot¹, X Panhard¹, D Descamps⁵, C Verstuyft⁶, B Vrijens⁷, A-M Taburet³, C Goujard⁸, F Mentré¹ and the ANRS 134–COPHAR 3 Study Group

Value of PK in context of missing adherence data

- Minimal if no dosing history data
- Biased interpretation of exposure/res

- Up to 10 fold variation within a patient assuming full adherence
- With correct dosing histories:
 no significant variation

Atazanavir PK "steady-state" troughs

Additional trough samples at week 8, 16, 24

RM Savic^{1,2}, A Barrail-Tran^{3,4}, X Duval¹, G Nembot¹, X Panhard¹, D Descamps⁵, C Verstuyft⁶, B Vrijens⁷, A-M Taburet³, C Goujard⁸, F Mentré¹ and the ANRS 134–COPHAR 3 Study Group

Clin Pharmacol Ther. 2012 Nov; 92(5): 575–583

