Controlling Tuberculosis: The Impact of Adherence on Treatment and Drug Development

Rada Savic PhD
Associate Professor,
Dept. of Bioengineering and Therapeutic Sciences
Div. of Pulmonary and Critical Care
University of California San Francisco
USA

4/1/2019
Disclosures:

- I receive funding from BMGF, NIH, UNITAID and CDC for TB-related research
- I serve as a paid consultant for WHO on various task forces related to TB Therapeutics and treatment guidelines
- I serve as a Scientific Advisor to TB Alliance, NGO
- I serve as a Scientific Advisor to Sanofi Aventis on TB Therapeutics
- I serve on Core Science Groups for TB Therapeutics in CDC and ACTG (NIH funded) Consortia
Tuberculosis: Global Scourge

- Infectious disease that kills most people in the world
- 9.4 million cases, 1.8 million deaths/year
- Most common cause of death in HIV-infected patients
- 1/3 of the world’s population latently infected
- Resistance is substantial (DR, MDR, XDR)
Current TB treatment (50 years old)

- Drug sensitive TB is treated for at least 6 months with 50-year-old drugs
- MDR-TB requires 9-24 months of highly toxic, poorly efficacious drugs

“intensive phase”
- isoniazid
- rifampin
- pyrazinamide
- ethambutol

“continuation phase”
- isoniazid
- rifampin 10 mg/kg

Controlled Settings 90-95%

months

Standard of Care
Treatment success globally

Africa

South-East Asia

Europe

WHO 2018 Global Report
Priority-Setting for Novel Drug Regimens to Treat TB
An Epidemiologic Model.

<table>
<thead>
<tr>
<th>Regimen characteristic</th>
<th>Values modeled for novel RS TB regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td>• Minimal: 94%</td>
</tr>
<tr>
<td></td>
<td>• Intermediate: 97%</td>
</tr>
<tr>
<td></td>
<td>• Optimistic: 99%</td>
</tr>
<tr>
<td>Barrier to resistance</td>
<td>• Minimal: 5%</td>
</tr>
<tr>
<td></td>
<td>• Intermediate: 0.8%</td>
</tr>
<tr>
<td></td>
<td>• Optimistic: 0%</td>
</tr>
<tr>
<td>Preexisting novel-regimen resistance</td>
<td>• Minimal: 10%</td>
</tr>
<tr>
<td></td>
<td>• Intermediate: 3%</td>
</tr>
<tr>
<td></td>
<td>• Optimistic: 0%</td>
</tr>
<tr>
<td>Medical contraindications</td>
<td>• Minimal: 11%</td>
</tr>
<tr>
<td></td>
<td>• Intermediate: 5%</td>
</tr>
<tr>
<td></td>
<td>• Optimistic: 0%</td>
</tr>
<tr>
<td>Duration</td>
<td>• Minimal: 6 mo</td>
</tr>
<tr>
<td></td>
<td>• Intermediate: 4 mo</td>
</tr>
<tr>
<td></td>
<td>• Optimistic: 2 mo</td>
</tr>
<tr>
<td>Tolerability/ease of adherence</td>
<td>• Minimal: 0%</td>
</tr>
<tr>
<td></td>
<td>• Intermediate: 25%</td>
</tr>
<tr>
<td></td>
<td>• Optimistic: 50%</td>
</tr>
</tbody>
</table>

Target Regimen Profile- Drug-Sensitive TB

Priority attributes

• 2-4 month duration
• >95% cure rate
• No requirement for lab testing for safety
• No drug interactions with first-line HIV drugs
• High barrier to emergence of resistance
Treatment Shortening Trials

Phase 2A
- EBA
- 2 weeks
- DOT

Phase 2B
- Culture conversion
- 2 months
- DOT

Phase 3 randomized controlled trial
- Unfavorable outcome (not relapse)
- 18 months
- Gold standard
- Various adherence strategy

Study Design and Endpoints
TB ReFLECT
One approach to improving tuberculosis therapy is to shorten the duration from 6 months to 4 months. In this trial in over 1900 patients with smear-positive tuberculosis, two 4-month moxifloxacin-based regimens did not perform as well as the standard 6-month regimen.

Shortening treatment regimens for tuberculosis may help control the disease. In this trial, patients with tuberculosis in sub-Saharan Africa received either a 4-month gatifloxacin-based regimen or the standard 6-month regimen. The gatifloxacin regimen was less effective.

In this report from sub-Saharan Africa, a 4-month regimen of moxifloxacin and rifapentine for pulmonary tuberculosis was not as beneficial as two 6-month regimens, and the benefits of a 6-month regimen based on rifapentine were similar to those of the standard 6-month regimen.
TB-ReFLECT: TB Re-Analysis of FluoroquinoLone Clinical Trials

- Individual Level Patient Meta Analysis (n=3709)

- Aimed to:
 - Identify **patient groups eligible for 4 month treatment**
 - Profile “hard-to-treat” patient populations
 - Identify **drug-specific** factors predicted of unfavorable response
 - To provide data-driven evidence for immediate impact on TB treatment implementation

- Findings validated in an independent dataset (Johnson, et al., TBRU trial)

Trials and Adherence Designs

A: OFLOTUB
Control Arm: 2EHRZ/4HR/2HR

B: REMoxTB
Control Arm: 2EHRZ/4HR

C: RIFAQUIN
Control Arm: 2EHRZ/4HR

Experimetal Arm 1: 2EHRZ/3HR
Experimetal Arm 2: 2EHRZ/3HR
Experimetal Arm 3: 2EHRZ/2PM
Experimetal Arm 4: 2EHRZ/2PM

Time (weeks)
Standard-of-Care, Adherence impact

Baseline characteristics, on treatment culture status, and adherence

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. unfavorable outcomes/ No. of study participants (%)</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>70/824 (8)</td>
<td>Reference</td>
</tr>
<tr>
<td>> 90 and < 100%</td>
<td>23/192 (12)</td>
<td>1.8 (1.1 – 3.0)</td>
</tr>
<tr>
<td><=90%</td>
<td>9/30 (30)</td>
<td>5.4 (2.5 – 11.5)</td>
</tr>
<tr>
<td>HIV status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>75/884 (8)</td>
<td>Reference</td>
</tr>
<tr>
<td>Positive</td>
<td>27/162 (17)</td>
<td>3.0 (1.8 – 5.0)</td>
</tr>
<tr>
<td>Month 4 culture status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>84/951 (9)</td>
<td>Reference</td>
</tr>
<tr>
<td>Positive</td>
<td>18/95 (19)</td>
<td>2.4 (1.4 – 4.3)</td>
</tr>
<tr>
<td>Month 2 culture status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>62/800 (8)</td>
<td>Reference</td>
</tr>
<tr>
<td>Positive</td>
<td>40/246 (16)</td>
<td>2.1 (1.4 – 3.3)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>21/304 (7)</td>
<td>Reference</td>
</tr>
<tr>
<td>Male</td>
<td>81/742 (11)</td>
<td>1.9 (1.1 – 3.1)</td>
</tr>
</tbody>
</table>
4-Month Regimens, Adherence impact

Baseline characteristics, on treatment culture status, and adherence

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. unfavorable outcomes/No. of study participants (%)</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>238/1348 (18)</td>
<td>Reference</td>
</tr>
<tr>
<td>> 90 and < 100%</td>
<td>64/288 (22)</td>
<td>1.4 (1.0 – 1.9)</td>
</tr>
<tr>
<td><=90%</td>
<td>15/32 (47)</td>
<td>5.7 (3.3 – 9.9)</td>
</tr>
<tr>
<td>Month 2 culture status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>212/1357 (16)</td>
<td>Reference</td>
</tr>
<tr>
<td>Positive</td>
<td>105/311 (34)</td>
<td>2.2 (1.7 – 2.9)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>64/492 (13)</td>
<td>Reference</td>
</tr>
<tr>
<td>Female</td>
<td>253/1176 (22)</td>
<td>1.6 (1.2 – 2.1)</td>
</tr>
<tr>
<td>Smear grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smear 0+ or 1+</td>
<td>53/388 (14)</td>
<td>Reference</td>
</tr>
<tr>
<td>Smear 2+</td>
<td>72/430 (17)</td>
<td>1.2 (0.8 – 1.7)</td>
</tr>
<tr>
<td>Smear 3+</td>
<td>192/850 (23)</td>
<td>1.6 (1.2 – 2.3)</td>
</tr>
<tr>
<td>HIV status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>270/1463 (18)</td>
<td>Reference</td>
</tr>
<tr>
<td>Positive</td>
<td>47/205 (23)</td>
<td>1.5 (1.1 – 2.0)</td>
</tr>
<tr>
<td>BMI (per 5 kg/m² decrease)</td>
<td>†</td>
<td>1.4 (1.1 – 1.7)</td>
</tr>
<tr>
<td>Age (per 10 years increase)</td>
<td>†</td>
<td>1.1 (1.0 – 1.2)</td>
</tr>
</tbody>
</table>
Adherence and 6/7 vs 7/7 Pill Counts

A. REMoxTB and RIFAQUIN analysis (7/7 doses per week)

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. Unfavorable Outcomes/ No. Study Participants (%)</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total doses</td>
<td></td>
<td>Reference</td>
</tr>
<tr>
<td>182 (7/7 doses per week)</td>
<td>26/452 (6)</td>
<td>2.4 (1.3 – 4.3)</td>
</tr>
<tr>
<td>156–181</td>
<td>22/217 (10)</td>
<td>28.9 (10.5 – 80.0)</td>
</tr>
<tr>
<td>112–155</td>
<td>13/18 (72)</td>
<td>0.9 (0.8 – 1.1)</td>
</tr>
<tr>
<td>Treatment Duration (per week)</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

B. OFLOTUB analysis (6/7 doses per week)

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. Unfavorable Outcomes/ No. Study Participants (%)</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total doses</td>
<td></td>
<td>Reference</td>
</tr>
<tr>
<td>144 (6/7 doses per week)</td>
<td>50/533 (9)</td>
<td>2.4 (1.2 – 4.8)</td>
</tr>
<tr>
<td>112–143</td>
<td>13/65 (20)</td>
<td>0.7 (0.5 – 0.9)</td>
</tr>
<tr>
<td>Treatment Duration (per week)</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

C. Kaplan Meier estimates

Probability of Favorable Outcome

- 7/7 doses per week, 26 weeks, (N = 452)
- 6/7 doses per week, 24 weeks, (N = 544)

Months since Start of Treatment

0 6 12 18 24
IN ADHERENCE, PATTERNS and TIMING MATTER
Very different health outcomes are possible, indeed likely

Each of the 4 patients took 75% of prescribed doses during a 3-month period
Adherence in Continuation Phase, SOC

REMOX (7/7)
OFLOTUB (6/7)
Monthly Adherence, SOC

REMOX (7/7) OFLOTUB (6/7)
Distribution of Monthly Missed Doses in Nonadherent patients: Non-random patterns drive the treatment failure

80-99% adherence
Non-random Patterns Drive the Treatment Failure

100% Adherence
80-99% Adherence and Random patterns
80-99% Adherence and Non-Random patterns
Pharmacological Rationale for Impact of Clustering of Missed Doses

- **0 missed doses**: Concentration above MIC throughout.
- **4 x 1 missed doses**: Concentration significantly below MIC for 7 hours.
- **2 x 2 missed doses**: Concentration below MIC for 15 hours.
- **1 x 4 missed doses**: Concentration below MIC for 19 hours.
Catalysis Biomarker Study

Predictors

- PET-CT scan
- Chest X-ray
- GeneXpert
- RNA-seq
- Strain
- Adherence
- Bacteria RNA
- Demographic

96 MGIT TTN results

<table>
<thead>
<tr>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 uncertain treatment outcome (EOT)</td>
</tr>
<tr>
<td>8 failed (EOT)</td>
</tr>
<tr>
<td>84 cured (EOT)</td>
</tr>
<tr>
<td>12 recurrence (EOT + 1)</td>
</tr>
<tr>
<td>72 cured (EOT + 1)</td>
</tr>
</tbody>
</table>

20 unfavorable
Adherence one of the best “biomarkers” of treatment failure

a

b

TTN category
- <= Week 4
- Week 8
- Week 12
- Week 24
- Week 24+
Hard-to-Treat Patients Benefit Most from Adherence Interventions

Control (No intervention):
% Adherence = 77.4%*

Text & Medication Monitor Intervention:
% Adherence = 88.6%*

All patients

Hard-to-Treat patients

Easy-to-Treat patients

*Data from Lui et al, PLOS Med, 2015
Cure TB Strategy with Adherence Intervention:

Clinical Trial Simulations, Pragmatic Trial with Adherence Intervention

Strategy 1: Stratified Duration

“one-size-fits-all

Strategy 2: Stratified Duration and Adherence intervention
Adherence and Forgiveness as Determinants of Efficacy vs Effectiveness and Clinical Trial Success

Randomized Clinical Trial

Control >95% Cure

A New Regimen 90% Cure

Efficacy

Implementation, Pragmatic Clinical Trial

80% Success Rates

85% Success Rates

Effectiveness (Regimens with drugs with long half-life)
Summary

- Partial- or non-adherence is the rule, rather than the exception, in clinical trials and in the field.

- HRZE is unforgiving regimen requiring large resources for optimizing adherence, but performing excellent in the trials.

- The gap between efficacy and effectiveness is much larger than for the unforgiving drug versus a ‘forgiving” drug.

- Forgiveness of the drug should be factored in non-inferiority margin.

- We will learn great deal from dosing history data collected with new devices.
Data Contributors:
• TB Alliance
• St. George's, University of London
• WHO
• Case Western

TB ReFLECT steering committee:
• Christian LIENHARDT
• Debra HANNA
• David HERMAN
• Katherine FIELDING
• Patrick PHILLIPS
• Payam NAHID
• Carl MENDEL
• Gerry DAVIS
• Bob WALLIS
• John JOHNSON

UCSF team:
• Marjorie IMPERIAL
• William FOX
• Rada SAVIC
• Natasha STRYDOM
• Leah Jarlsberg
• Yusi CHEN

Catalysis team
• Jill WINTER

Thank you!
Value of PK in context of missing adherence data

- Minimal if no dosing history data
- Biased interpretation of exposure/response
- Up to 10 fold variation within a patient assuming full adherence
- With correct dosing histories: no significant variation

Atazanavir PK “steady-state” troughs

- Additional trough samples at week 8, 16, 24

![Graph showing trough concentrations over weeks 4 to 24]