Use of PBPK Model to Evaluate Impact of Ophthalmic Drug Product’s Critical Quality Attributes on BA/BE Assessment

ASCPT 2019 Annual Meeting Pre-Conference:
PBPK Modeling for the Development and Approval of Locally Acting Drug Products
March 13, 2019
Session 3: Ophthalmic Drug Products

Andrew Babiskin, Ph.D.
Lead Chemist
Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs
CDER | US FDA

Disclaimer: My remarks today do not necessarily reflect the official views of the FDA
Topically-Applied Ophthalmic Dosage Forms

- Various levels of complexity

- Regardless, successful drug delivery is countered by natural processes such as blinking, tear production, and drainage -> significantly reduced bioavailability (BA) for intraocular tissues

- Dosage forms:
 - Solution: single-phase; active pharmaceutical ingredient (API) completely dissolved
 - Suspension: solid API particles dispersed in liquid vehicle; liquid phase is a saturated solution of API
 - Emulsion: generally dispersions of oily droplets in an aqueous phase (o/w); API can appear in multiple phases; improved solubility and sustained drug release
 - Ointment: dispersion of API in ointment base (API can be dissolved or undissolved); generally leads to greater retention precorneally with less frequent administration

General Ophthalmic Bioequivalence (BE) Paradigm

Ophthalmic solutions

In vitro demonstration
302.22(b)(1)

In vivo (clinical or PK)

CQA – critical quality attribute

Ophthalmic suspensions, emulsion and ointments

In vitro demonstration of CQA sameness

In vivo (clinical or PK)

Same principle as solution BE, but additional testing to account for added formulation complexity

E.g., aqueous humor PK or comparative clinical endpoint with intraocular pressure (IOP)

Adapted from Dr. Darby Kozak, DTP/ORS/OGD/CDER
Q1/Q2/CQA In Vitro Bioequivalence Approach

- Totality of evidence approach to confirm that the physicochemical properties of two products are comparative, such that they must have comparable in vivo bioavailability, and bioequivalence may be considered self-evident.*

Identification of CQAs is product-specific and dependent on dosage form, formulation, and manufacturing process.

* “A product that meets Q1/Q2 sameness, comparability of physicochemical properties, and an acceptable comparative in vitro release rate should become available at the site of action at a rate and to an extent that is not significantly different from that of the RLD, thus meeting the requirement for demonstrating bioequivalence.” FDA-2014-P-2301, FDA-2016-P-2781, FDA-2016-P-2782

Source: Dr. Darby Kozak, DTP/ORS/OGD/CDER, 2018 SBIA Complex Generic Drug Product Development Workshop
Modeling Ocular BA and Pharmacodynamics (PD)

QSAR models of corneal permeability
Several literature and commercial (e.g., Simulations Plus ADMET predictor) models

Mathematical PK models: diffusion-based or compartmental models

Mathematical PD models: IOP

Regulatory Utility of Ocular PBPK Models

Model integrated evidence for generic drug development and approval

- Support product development -> gain confidence in formulation selection to conducting local PK, PD, or comparative clinical endpoint (CCE) BE study
- Potentially support in vitro only BE approaches in lieu of in vivo studies
- Guide selection of clinically-relevant in vitro tests for BE
- Define a safe space for CQAs of ophthalmic products
- Justify differences in CQAs from the reference-listed drug (RLD)

Conduct virtual bioequivalence studies

Product-specific guidance development
Challenges for Ocular PBPK Models

Data availability?

- Ideal case: multiple formulations with PK/PD/clinical endpoints -> build in vitro in vivo correlations (IVIVC)
- Unified model approach: test multiple products with a range of formulation characteristics and API properties; i.e., verification of modeling platform to predict differences between products
- Majority of data in rabbits

Species?

- Rabbit modeling can inform formulation selection for eventual in vivo study
- Can rabbit ocular PBPK models be extrapolated to human? Central challenge
- Human modeling can support BE and product specifications
Ocular PBPK – Focus for BE Assessment

- Critical for accurate prediction of local concentrations -> protein (including enzymes) binding and effect modeling
- Critical for verification – confidence in local and systemic concentration predictions

- Includes modeling (i.e., mechanistic description) of the formulation
- Includes what happens to the product after topical application and interaction with tear film and eye blinking
- Complexity dependent on drug product
- For BE assessment, here is where the difference between two products are inputted into the model

www.fda.gov
Modeling Ophthalmic Suspensions

Internal case study - Dexamethasone

- After instillation, several routes of API transport:
 - Dissolved API diffusing from tear film through cornea or conjunctiva
 - Solid particles and dissolved API cleared from eye surface through nasolacrimal drainage -> systemic circulation
- OCAT Model Development – internally conducted rabbit study with PK sampling from multiple ocular tissues and plasma
- Model Verification with multiple datasets showing:
 - Particle size impact on ocular absorption
 - Viscosity impact on ocular absorption
 - Non-linear dose-exposure relationship

LeMerdy, Maxime, et al. “Application of Mechanistic Ocular Absorption Modeling and Simulation to Understand the Impact of Formulation Properties on Ophthalmic Bioavailability in Rabbits: A Case Study using Dexamethasone Suspension.” In submission
Modeling Ophthalmic Suspensions

Internal case study – Dexamethasone (cont’d)

Parameter sensitivity analysis in rabbit on PS and viscosity

- Viscosity is a critical attribute affecting BE
- Plasma/systemic PK is not reflective of local concentrations

Saturated solution vs. suspension simulations

- Solid particles in formulation leads to higher aqueous humor concentrations, BUT ...
- Also higher systemic exposure
- A tool for product development that can weigh benefits and risks

LeMerdy, Maxime, et al. “Application of Mechanistic Ocular Absorption Modeling and Simulation to Understand the Impact of Formulation Properties on Ophthalmic Bioavailability in Rabbits: A Case Study using Dexamethasone Suspension.” In submission

www.fda.gov
Modeling Ophthalmic Suspensions

Next Steps - Brinzolamide

- 2 rabbit studies:
 1. Biodistribution/PK study with RLD (AZOPT – NDA 20816) only
 2. Impact of CQAs on IOP with multiple formulations

- FDA Office of Testing and Research (OTR): Q1/Q2 formulations to AZOPT that differ in specific CQAs expected to impact BE (preliminarily confirmed through PBPK modeling)

- Future considerations for verifying human ocular PBPK models through IOP sampling
Modeling Ophthalmic Emulsions

Key characteristics of emulsions

- API in emulsion can be found in multiple phases
- FDA internal and external research into such measurements and in vitro API release
- Integration of tear film dynamics and API/vehicle dynamics at ocular surface into PBPK platforms
- Emulsion modeling part of Contract HHSF223201810151C with CFDRC
Modeling Ophthalmic Emulsions

Internal case study – Tear Film Modeling

- Example of modeling formulation-physiology interaction
- Tear film breakup time (TBUT):
 - A test used to assess for evaporative dry eye disease
 - Once applied, emulsion mixes with tear film and then oily globules break down and attach to the lipid layer of the tear film
- TBUT model – fluid mechanics approach incorporating certain CQAs: non-Newtonian viscosity, osmolality, and surface tension

Potential Next Steps

- Further tear film modeling and validation
- Rabbit studies with multiple Q1/Q2 formulations where tear film thickness and menisci measurements will be taken from the ocular surface

Modeling Ophthalmic Ointments

Ongoing Activities

- Subject of Contracts
 HHSF223201810151C (CFDRC) and
 HHSF223201810255P (Simulations Plus)

- Critical modeling aspects:
 - Incorporation of drug release models into PBPK Platforms
 - Rheological considerations – longevity on ocular surface, ointment redistribution upon blinking

Summary

- **Ocular PBPK modeling** is more than just predicting ocular biodistribution
- Successful regulatory application of PBPK models necessitates a full understanding of the drug product and how to input the drug product (i.e., CQAs)
- While verification in human is challenging/limited, verifying mechanistic formulation descriptions with preclinical data should translate to human models
- In rabbit vs. human, formulation-physiology interactions may differ (e.g., impact of blinking rate)
- GDUFA regulatory science program will continue to fund advancements in ocular PBPK modeling and ophthalmic formulation characterization
Acknowledgments

FDA/OMPT/CDER
OGD/ORS/DQMM
 Jianghong Fan (former)
 Maxime Le Merdy (former)
 Mingliang Tan
 Eleftheria Tsakalozou
 Ross Walenga
 Myong-Jin Kim
 Liang Zhao

OGD/ORS/DTP
 Darby Kozak & Team

OGD/ORS-IO
 Lei Zhang
 Robert Lionberger

OPQ/OTR/DPQR
 Xiaoming Xu

DQMM External Collaborators
Simulations Plus, Inc., Grant #: 1U01FD005211
Simulations Plus, Inc., Contract #: HHSF223201810255P
CFD Research Corporation, Grant #: 1U01FD005249
CFD Research Corporation, Contract #: HHSF223201810151C

www.fda.gov/GDUFARegScience