
ASCPT 2019 Pre-Conference:
PBPK Modeling for the Development and Approval of Locally Acting Drug Products
March 13th, 2019
Session 4: Dermal Drug Delivery

Eleftheria Tsakalozou, PhD
Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs
CDER | US FDA

Disclaimer: My remarks today do not necessarily reflect the official views of the FDA
Overview

• Drug development of locally-acting drug products
 – Dermal physiologically-based pharmacokinetic (PBPK) modeling

• Regulatory utility of dermal PBPK modeling
 – Case studies
 – Challenges

• GDUFA-funded research

• Future directions
Dermatological Drug products

• Transdermal delivery systems (TDS)

• Semisolid Topicals
 – Creams
 – Ointments
 – Lotions
 – Gels

• Solution-based Topicals
 – Solutions
 – Swab
 – Foam aerosols
Modeling Skin Bioavailability ...

- QSAR models: hydrophobicity, MW, hydrogen bonding
- Mathematical models: diffusion-based or compartmental models
- Computational Fluid Dynamics models: fluid and particle transport based on realistic geometries
- Mechanistic PBPK models: API, formulation and human/animal physiology (variability and population)
Dermal PBPK Modeling Relates What we Want to Know to What we can Measure

What we would like to know:
- local drug concentrations

What we can measure:
- Systemic drug exposure
- Formulation in vitro performance
Dermal PBPK Model Development Process

- **Model Structure**
- **Drug Product Attributes**
 - API Phys Chem Properties
- **(Skin) Physiology in Healthy vs Diseased Populations**
- **In Vitro and Ex Vivo Testing Data**
- **Verification**
 - IVPT, dOFM, clinical PK study
- **Refinement/Optimization**
 - IVPT, dOFM, clinical PK study

IVPT: In Vitro Permeation Testing, dOFM: dermal open-flow microperfusion, PK: Pharmacokinetic
Regulatory Utility of Dermal PBPK Models

Model-integrated evidence for generic drug development and approval

• Support alternative bioequivalence (BE) approaches
 – Comparative clinical endpoint BE studies not sensitive to formulation differences
 – In vitro testing for Q1/Q2 same formulations

• Define a safe space for critical attributes

• Extrapolate BA predictions and BE assessments from healthy to diseased populations

Conduct virtual BE studies

Product-specific guidance (PSG) development

Regulatory Utility of Dermal PBPK Models
today’s discussion

- Office of Generic Drugs: Alternative BE approaches proposed by applicants
- FDA Internal Research: Design a safe space for formulation attributes based on BE assessments
 - Case Study 1: Nicotine, TDS
 - Case Study 2: Lidocaine, topical cream
- GDUFA-funded Research: Predict BA and perform BE assessments in diseased populations
Regulatory Utility of Dermal PBPK Models
today’s discussion

• Office of Generic Drugs ➡️ Alternative BE approaches proposed by applicants
• FDA Internal Research ➡️ Design a safe space for formulation attributes based on BE assessments
 – Case Study 1: Nicotine, TDS
 – Case Study 2: Lidocaine, topical cream
• GDUFA-funded Research ➡️ Predict BA and perform BE assessments in diseased populations

www.fda.gov
Dermal PBPK Modeling to Support Alternative BE Approaches

• Pre-ANDA meeting requests/ANDAs on dermatological drug products (yrs 2017-2018)

• PSG recommendations include in vivo BE studies

Applicants’ proposals:

Dermal PBPK modeling in support of not conducting in vivo BE studies (comparative clinical endpoint or pharmacokinetic endpoint studies)

− Q1/Q2 same and Q3 similar drug products, IVRT and/or IVPT
− Suitably verified dermal PBPK model to predict local and systemic drug amounts
− Virtual bioequivalence study and bioequivalence assessment
Regulatory Utility of Dermal PBPK Models today’s discussion

- Office of Generic Drugs ➔ Alternative BE approaches proposed by applicants
- FDA Internal Research ➔ Design a safe space for formulation attributes based on BE assessments
 - Case Study 1: Nicotine, TDS
 - Case Study 2: Lidocaine, topical cream
- GDUFA-funded Research ➔ Predict BA and perform BE assessments in diseased populations
Predict Systemic Bioavailability Based on the Release Rate for a Nicotine TDS

- Nicoderm CQ®, Nicotine TDS, 21 mg/24 hours, extended release patch
- Simcyp Simulator (v17), MPML MechDermA Model
- Nicotine: monoprotic base, minimal PBPK model
- Default skin absorption parameters
- Formulation attributes
 - Dermal patch, controlled release profile from IVPT data or zero order release rate
- Model verification
 - Systemic exposure

2Shin et al., 2015 AAPS Annual Meeting and Exposition, Orlando, FL.
3Benowitz et al., Clin Pharmacol Ther. 1991 Sep;50(3):286-93
Transdermal Patch Development Leveraging the Nicotine Dermal PBPK Model

Patch release rate impacts systemic exposure

Formulation selection based on simulated single dose and steady state scenarios

Predict Systemic and Skin Bioavailability Based on Formulation Attributes for a Lidocaine Cream

- EMLA® Cream (lidocaine 2.5 %/prilocaine 2.5 %)
- Simcyp v17 Simulator, MPML MechDermA Model
- Lidocaine: monoprotic base, minimal PBPK model
- Skin absorption parameters modified based on systemic exposure data
- Formulation attributes
 - Emulsion
 - Vehicle evaporation
- Model verification
 - Systemic exposure data
 - Dermal open-flow microperfusion (dOFM) data

1 Benowitz et al.. Clin Pharmacokinetics. 1978, May-Jun;3(3):177-201
3 Rangappa et al., 2018 AAPS Annual Meeting and Exposition, Washington, D.C.
4 Tiffner et al., 2018 AAPS Annual Meeting and Exposition, Washington, D.C.
Identify Formulation Attributes Impacting Systemic and Local Lidocaine Exposure

Parameter sensitivity analysis using the lidocaine dermal PBPK model

- Formulation pH → systemic + dermis exposure
- Evaporation rate ❌
- Droplet size → systemic + dermis exposure
- Droplet number ❌
- Viscosity ❌
- Solubility ratio (dispersed/continuous phase) → dermis exposure
Define Safe Space Criteria for Formulation Attributes
Leveraging the Lidocaine Dermal PBPK Model

Dermatological Products with:
Therapeutic effect involves partitioning into the blood
Safety concerns

Dermatological Products with:
Therapeutic effect related to local exposure

www.fda.gov
Regulatory Utility of Dermal PBPK Models
today’s discussion

- Office of Generic Drugs ➔ Alternative BE approaches proposed by applicants
- FDA Internal Research ➔ Design a safe space for formulation attributes based on BE assessments
 - Case Study 1: Nicotine, TDS
 - Case Study 2: Lidocaine, topical cream
- GDUFA-funded Research ➔ Predict BA and perform BE assessments in diseased populations
Predict Caffeine Skin Bioavailability in Psoriatic Patients

Perspectives in Percutaneous Penetration 2018, 12th International Conference, La Grande Motte, France

Mechanistic Physiologically-Based Pharmacokinetic Modelling for Prediction of Dermal Absorption in Psoriatic Patients

CERTARA® Simcyp

F. MARTINS, N. PELLE, M. JAMEL, and S. POLAK
1Simcyp Limited, UK; 2Faculty of Pharmacy, Jagiellonian University Medical College, Poland

• Simcyp v17 Simulator, Psoriasis Dermal population
• Caffeine, solution gel

• Number of cracks, skin pH and SC hydration affect percutaneous absorption
• Performance verification

www.fda.gov
Dermal PBPK modeling: Challenges

• Assessing model performance
 – Data availability: preclinical species, verification/qualification
 – Verification standards

• Proper documentation for model building and model performance
 – Model assumptions and limitations
 – Parameter optimization/sensitivity analyses
 – Verification and qualification outcomes

• Virtual bioequivalence studies
 – Drug product attributes, API characteristics and species physiology, intra- and inter-subject variability
Generic Drug User Fee Amendments: Regulatory Science/Research

<table>
<thead>
<tr>
<th>Grant</th>
<th>Grant Duration</th>
<th>Institute</th>
<th>Grant No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and validation of dermal PBPK modelling platform towards virtual bioequivalence assessment considering population variability</td>
<td>2014-2018</td>
<td>Simcyp, Ltd</td>
<td>1U01FD005225</td>
</tr>
<tr>
<td>Physiologically based biopharmaceutics and pharmacokinetics of drug products for dermal absorption in humans</td>
<td>2014-2019</td>
<td>University of South Australia</td>
<td>1U01FD005232</td>
</tr>
<tr>
<td>Characterization of key system parameters of mechanistic dermal PBPK models in various skin diseases and performance verification of the model using observed local and systemic concentrations</td>
<td>2018-2020</td>
<td>Simcyp, Ltd</td>
<td>1U01FD006521</td>
</tr>
<tr>
<td>Assessment of Transdermal Drug Product Quality and Performance Attributes via Enhanced Virtual Bioequivalence Simulations</td>
<td>2018-2020</td>
<td>SimulationsPlus, Inc</td>
<td>1U01FD006526</td>
</tr>
<tr>
<td>Formulation drug product quality attributes in dermal physiologically-based pharmacokinetic models for topical dermatological drug products and transdermal delivery systems</td>
<td>2018-2020</td>
<td>University of Queensland</td>
<td>1U01FD006522</td>
</tr>
<tr>
<td>PBPK and Population Modeling Seamlessly Linked to Clinical Trial Simulation in an Open-Source Software Platform</td>
<td>2018-2021</td>
<td>Children’s Hospital of Los Angeles</td>
<td>1U01FD006549</td>
</tr>
</tbody>
</table>
Towards Developing Reliable Dermal PBPK Models For Regulatory Decision-making...

Dermal PBPK modeling is a powerful approach that can be used to
- Explore relationships between systemic and local drug exposure
- Support alternative BE approaches
- Define a safe space for formulation attributes
- Extrapolate BA predictions/BE assessments from healthy to diseased populations
- Conduct virtual BE studies
- PSG development
Acknowledgments

FDA/OMPT/CDER
OGD/ORS/DQMM
 Zhanglin Ni
 Ross Walenga
 Alex Rygg
 Andrew Babiskin
 Myong-Jin Kim
 Liang Zhao
OGD/ORS/DTP
 Sam Raney
 Priyanka Ghosh
 Tannaz Ramezanli
OGD/ORS-IO
 Lei K. Zhang
 Robert Lionberger
OTS/OCP
 Xinyuan Zhang

Grantees
University of South Australia, Grant #: 1U01FD005232
Simcyp Ltd, Grant #: 1U01FD005225, 1U01FD006521
University of Queensland, Grant # 1U01FD006522
SimulationsPlus, Inc, Grant # 1U01FD006526
Children's Hospital of Los Angeles, Grant # 1U01FD006549

www.fda.gov/GDUFARegScience
Towards developing reliable dermal PBPK models...

Moving forward it is **important to engage all stakeholders** to

- improve software tools that adequately describe formulation and drug substance properties and skin physiology/disease states
- leverage data on local drug concentrations to develop and qualify dermal PBPK models that capture inter- and intra-subject variability
 - literature sources
 - FDA-funded research sources
GDUFA-funded research is set to close knowledge gaps

Local drug concentrations
- dOFM, skin stripping, dermal microdialysis
- In vitro permeation testing

Formulation
- Product quality attributes of semisolid dosage forms

Systemic drug exposure
- Individual drug concentration-time profiles

API
- Variety of physicochemical properties and pharmacokinetics

Increase model predictability in regards to local drug concentrations

In vitro-in vivo correlations to predict local drug concentrations based on key formulation characteristics
Efinaconazole topical solution

- Indicated for toenail fungal infections
- Computational fluid dynamics (CFD)
- Spreadability, penetrability, absorption of non-Q1/Q2 formulations
Prediction of Systemic Bioavailability Based on Nicoderm CQ patch Release Rate

- Nicoderm CQ®, Nicotine Transdermal System 21 mg Delivered over 24 hours, extended release patch
- Simcyp Simulator (V17), MPML MechDermA Model
- Nicotine: monoprotic base, minimal PBPK model: Vd=3 L/Kg, CL=72 L/h
- Default skin absorption parameters
- Formulation attributes: Dermal patch, Controlled release profile from IVPT data (Shin et al., 2015) or zero order release rate (Benowitz et al., 1991)
Prediction of Systemic and Skin Bioavailability Based on EMLA® Cream Formulation Attributes

EMLA® Cream (lidocaine 2.5 %/prilocaine 2.5 %)
Simcyp Simulator (V17), MPML
MechDermA Model
Lidocaine: monoprotic base, minimal PBPK model: Vd=1.5 L/Kg, CL=60 L/h
Skin absorption parameters were modified based on systemic exposure data\(^1\)
Formulation attributes: emulsion, vehicle evaporation was assumed (Rangapa et al., 2018, AAPS) for verification of the dOFM data (Tiffner et al., 2018, AAPS)

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (µg/mL)</td>
<td>Tmax (h)</td>
<td>Cmax (µg/mL)</td>
</tr>
<tr>
<td>280</td>
<td>10</td>
<td>317</td>
</tr>
</tbody>
</table>

\(^1\) Drug label
Define a Safe Space Criteria for Formulation Characteristics Based on Bioequivalence Assessment

Systemic Exposure

Dermatological Products with:
- Safety concerns
- Therapeutic effect involves partitioning into the blood
Define a Safe Space Criteria for Formulation Characteristics Based on Bioequivalence Assessment

Skin Bioavailability

Dermatological Products that:
✓ Act locally on the skin
✓ Therapeutic effect related to local exposure