Using PBPK to link systemic PK to local delivery in the lung

Günther Hochhaus and Jürgen Bulitta

In collaboration with
Rob Price, Jag Shur (Univ. of Bath)
Mike Hindle (VCU)
Disclaimer

- **Funding** for part of this work (DPI formulations, in vitro characterizations and PK study) was made possible, in part, by the **Food and Drug Administration** through contracts HHSF223201110117A, HHSF223201610099C, HHSF223201300479A, and grant 1U01FD004950 (dissolution).

- **Views expressed in this presentation do not necessarily reflect the official policies of the U.S. Food and Drug Administration,**

- nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.
Topics related to Bioequivalence?

dose, regional deposition, time?

40 - 90 % Swallowed
(reduced by spacer or mouth rinsing)

Mouth and pharynx

10 - 60 %
Deposited in lung

Lung

Complete absorption from the lung

GI tract

Absorption from gut

Liver

Orally bioavailable fraction

First-pass inactivation

Systemic side effects

Systemic Circ.
Actual Question of this research Project

Can PK (NCA, PBPK/semi-mechanistic models) extract Information on:

• Dose
• Dissolution/Absorption
• Regional Deposition

\[\text{Dose} \rightarrow \text{central} \rightarrow \text{peripheral} \]

\[\text{Cl}_{\text{muc}} \rightarrow \text{Dose} \rightarrow \text{AUC?} \]

\[k_a \rightarrow \text{Slow?} \rightarrow \text{fast?} \]
Study Outline

- Develop three DPI-FP formulations (R. Price/Jag Shur)
 - Same dose
 - Same dissolution rate
 - Difference in central to peripheral lung deposition.

- Characterize through in vitro experiments
 - Ex throat dose (Mike Hindle)
 - Cascade impactor profile
 - Dissolution rate

- Perform PK (4 way cross-over, repeat one formulation)
 - Inhalation profiles measured for each inhalation
 - Intra-subject variability
 - NCA, compartmental population PK modeling (PBPK)
Cascade Impactor Data

<table>
<thead>
<tr>
<th>Mass deposition</th>
<th>Particle size (μm)</th>
<th>A - 4.5 μm</th>
<th>B - 3.8 μm</th>
<th>C - 3.7 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Median Aerodynamic Diameter</td>
<td></td>
<td>4.50</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Larger Particles</td>
<td>2.8 - 8.1 μm</td>
<td>12.5</td>
<td>14.4</td>
<td>11.5</td>
</tr>
<tr>
<td>Smaller Particles(^p) (μg)</td>
<td>< 2.8 μm</td>
<td>4.8</td>
<td>9.4</td>
<td>8.1</td>
</tr>
<tr>
<td>Relative Ex Throat Dose</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

\(^c\) and \(^p\) presumable representing central and peripheral lung deposition, respectively

- Similar mass deposition on larger stages
- Mass deposition on smaller stages was substantially smaller for A-4.5μm
Do formulations provide same absorption rate?

In vitro dissolution and permeation

<table>
<thead>
<tr>
<th>Formulation</th>
<th>MDT (h)</th>
<th>Relative surface area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4.5 µm</td>
<td>15.4</td>
<td>0.5</td>
</tr>
<tr>
<td>B-3.9 µm</td>
<td>13.3</td>
<td>0.7</td>
</tr>
<tr>
<td>C-3.7 µm</td>
<td>10.3</td>
<td>1</td>
</tr>
</tbody>
</table>
PK Study Design

- 4-way, cross-over, double blind
- 24 healthy volunteers
- Dose: 5 * 100 μg
- Record individual inhalation profiles
- Non-compartmental Analysis + Compartmental Analysis (population-PK)
- PBPK based evaluation of popPK results
Before dose normalization

![Graph](image)

- A-4.5 um
- B-3.8 um
- C-3.7 um
- C-3.7 um (Repeat)
Conclusion I: NCA/BE

Overall:

Before dose Normalization
• AUC and C_{max}: $A \# B = C$

After Dose Normalization
• AUC: $A = B = C$
• C_{max}/Dose: $A \# B = C$

AUC: c/p Differences could not be shown

C_{max}: c/p Differences ????
Population PK analysis.

Fc: absorbed dose fraction from the central region of the lungs

Fp: absorbed dose fraction from the central region of the lungs

First 6 h

Drug concentration (pg/mL)

Central lung

Periphe ral lung

Central CMT

Peripheral CMT

\(F_c \)

\(F_p \)

\(k_{a_c}^* \)

\(k_{a_P}^* \)

\(C \)

\(C_L \)

\(CL_D \)
<table>
<thead>
<tr>
<th>Parameters</th>
<th>A - 4.5 μm</th>
<th>B - 3.8 μm</th>
<th>C - 3.7 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption $t_{1/2}$ for central lung (h)</td>
<td>6.2</td>
<td>7.9</td>
<td>9.1</td>
</tr>
<tr>
<td>Absorption $t_{1 peripheral}$ lung (h)</td>
<td>0.241</td>
<td>0.114</td>
<td>0.096</td>
</tr>
<tr>
<td>Absorbed dose - central lung (%)</td>
<td>6.4 (18.2%)</td>
<td>4.4 (19.9%)</td>
<td>4.8 (15.1%)</td>
</tr>
<tr>
<td>Absorbed dose - peripheral lung (%)</td>
<td>5.1 (13%)</td>
<td>9.9 (17%)</td>
<td>9.9 (11%)</td>
</tr>
<tr>
<td>c/p ratio</td>
<td>1.25</td>
<td>0.44</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Point estimate and 90% CI for geometric mean ratio

- B-3.8 µm and C-3.7 µm were bioequivalent for both Fc and Fp
- A-4.5 µm vs B-3.8 µm and A-4.5 µm vs. C-3.7 µm were not bioequivalent
Conclusion 2: Proposed New Methodology for PopPK BE testing

- **PK trial**: Perform PK study of Test (T) and Reference (R) Product
- **NCA**: Standard BE of C_{max} and AUC
- **Perform PopPk analysis**: Determine absorbed dose in central and peripheral lung for every subject
- **Test BE**: Perform BE assessment for absorbed dose in **central** lung
 Perform BE assessment for absorbed dose in **peripheral** lung
Can we explain PopPK results by PBPK?

- We Know from PopPK
 - peripheral and central dose
 - central and peripheral ka

- PBPK Parameters
 - Deposited dose (in vitro)
 - c/p ratio (MMAD)
 - Dissolution (MMAD, GSD)
 - Permeability
 - caco-2-cells
 (isolated perfused lung)
PBPK Approach

Deposition:
- Subject related
 - Inhalation profile
- In vitro:
 - Ex-throat dose
 - Cascade impactor

In-silico Assessment:
- Deposition Modeling
 - c/p ratio
 - Regional doses

Dissolution:
- Subject related:
 - Healthy/Patient
- In vitro:
 - Solubility
 - Particle Size
 - Dissolution rates
- In-silico
 - Agglomeration factor
 - Noyes-Brunner

Output
- Dissolution rate

Diffusion:
- Subject related:
 - Surface Areas, Thickness
- In vitro:
 - Peff (caco-2)
- In-silico
 - Ficks-law (scaling)

Output
- Absorption rate

Input parameters:
- central
- peripheral
Absorption Profile: PopPK vs PBPK

 Peripheral

 Formulation C

 Central

 Formulation C

 Dose: 54 mcg, Preludium
 Surface area: 60.2 *10^4 cm^2
 Permeability Peff: 13.8*10^-3 cm/h (Eriksson)
 Fitted Parameter:
 Solubility: 0.73 µg/ml (Literature =0.5-1.4 µg/ml)

 Dose 25 mcg, Preludium
 Surface area: 1.00E+04 cm^2
 Solubility: 0.73 µg/ml
 Fitted Parameter:
 Permeability: 0.7*10^-3 cm/h
Drug Concentration in Lining Fluid

Peripheral Lung

Central Lung

Dissolved drug concentration (mcg/ml)

Time (hr)

Upper limit for sink condition

Upper limit for sink condition
Conclusion (Part 3)

• PBPK model appears to be able to describe central and peripheral absorption by considering dissolution and permeation.

• Slow central absorption due to lack of sink conditions and combined effects of dissolution and permeation.

• PBPK approach should be able to predict PK of formulations differing in regional deposition, dose and dissolution.

• Can PBPK support NCA approach?
Is C_{max} sensitive to c/p ratio?

Differences in Dissolution Rate

<table>
<thead>
<tr>
<th></th>
<th>MDT (h)</th>
<th>Relative surface area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4.5 µm</td>
<td>19.2</td>
<td>0.5</td>
</tr>
<tr>
<td>C-3.7 µm</td>
<td>13.4</td>
<td>1</td>
</tr>
</tbody>
</table>

Integrate in PBPK Model

Nernst-Brunner

Ficks Law

C_{max}, if only dissolution differs

<table>
<thead>
<tr>
<th>C_{max} ratio</th>
<th>Predicted</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/A</td>
<td>1.15</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Average % Dissolved

Time (h)

Concentration (ng/L)
Conclusions

• NCA Analysis are able to answer relevant questions related to BE assessment of Inhalation drugs (at least for lipophilic corticosteroids)
 – Dose
 – Residence time
 – Regional deposition

• Clinical studies might not be necessary

• Work underlines that PK may be able to provide supportive information important for pulmonary bioequivalence assessment
Study teams

UF Team
Jürgen Bulitta, Ph.D.
Mong-Jen Chen, Ph.D.
Yuanyuan Jiao, Ph.D.
Uta Schilling, Ph.D.
Sharvari Bhagwat, Ph.D.
Abhinav Kurumaddali

UF Team
Sandra Baumstein, Pharm.D
Brandon Seay, MD
Mutasim N Abu Hasan, MD
Jie Shao
Elham Amini, Pharm. D.
Ann Ross, MHA

FDA Team
Denise Conti, Ph.D.
Renish Delvadia, Ph.D.
Minori Kinjo, Ph.D.
Bavna Saluja, Ph.D.
Murewa Oguntimein, M.H.S.
- HHSF223201110117A
- HHSF223201610099C
- HHSF223201300479A
- 1U01FD004950

UB
Jag Shur, Ph.D.
Robert Price, Ph.D.

VCU
Mike Hindle, Ph.D.
Xiangyin Wei, Ph.D.