Impact of Orally Inhaled and Nasal Drug Product PBPK Models on Product Development and Regulatory Decision Making

ASCPT 2019 Annual Meeting Pre-Conference:
PBPK Modeling for the Development and Approval of Locally Acting Drug Products
March 13, 2019
Session 1: Orally Inhaled and Nasal Drug Products

Ross Walenga, Ph.D.
Chemical Engineer
Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs
CDER | US FDA

Disclaimer: My remarks today do not necessarily reflect the official views of the FDA
Regulatory Impacts/Applications of PBPK for OINDPs

• Generic Orally Inhaled and Nasal Drug Product (OINDP) Development
  – Inform product design and development

• Regulatory Utility
  – Product specific guidance (PSG) development
  – Potentially support alternative bioequivalence (BE) approaches including not conducting comparative clinical endpoint BE studies
Why PBPK for OINDP Development?

- Product Specific Guidance (PSG) documents for generic locally-acting OINDPs
  - Often recommend “weight of evidence” approach
  - May include pharmacodynamic or comparative clinical endpoint BE studies

- Model to integrate formulation development, device development, and increase chance of showing BE for multiple studies

www.fda.gov
Modeling Considerations for Locally-Acting OINDPs (Part 1)

Regional Deposition

Single-photon emission computerized tomography (SPECT) images – Figure 1 of Kwok et al. (2019)

Mucociliary Clearance

Mucociliary clearance mechanisms – Figure 2 of Bustamente-Marin and Ostrowski (2017)
Dissolution and Permeation

Transwell volume-limited dissolution apparatus – Figure 2 of Arora et al. (2010)

Macrophage Uptake

Macrophage uptake – Figure 2 of Hirota and Terada (2012)
PBPK Modeling for Locally-Acting OINDPs – Case Studies

• Poorly soluble compounds
  – Regional transit due to mucociliary clearance

• Formulation changes for dry powder inhalers (DPIs)
  – Carrier particle modification
Case Study 1: Poorly Soluble OIDP Compound

- This case study describes work by Bäckman et al. (2017)
- New selective glucocorticoid receptor modulator, AZD5423
- Poorly soluble in water, highly lipophilic
- PK data available for model building
  - Study 1: Intravenous (IV), oral, two different nebulizers
  - Study 2: IV, oral, two different nebulizers, two different DPIs
- PBPK: Relationship between in vitro parameters and PK exposure
  - GastroPlus 9.0
- In vitro parameters: delivered dose, ex-mouth throat model (ex-MTM) dose, particle size distribution
Delivered Dose and Ex-MTM Dose do not Predict AUC

Figure 3 from Bäckman et al. (2017): For OIDP-delivered drug, correlations between area under the curve (AUC) and A) delivered dose to the lung, B) ex-mouth-throat-model (ex-MTM) dose, and C) peripheral dose computed using semi-empirical model.
PBPK Predictions of AUC and $C_{\text{max}}$ Correlate Well with PK Data

Figure 4 from Bäckman et al. (2017): For OIDP-delivered drug, correlations between observed and simulated A) maximum plasma concentration ($C_{\text{max}}$) and B) area under the curve (AUC).

A) Observed $C_{\text{max}}$ (nM) vs. Simulated $C_{\text{max}}$ (nM) with $R^2 = 0.8925$

B) Observed AUC (nMh) vs. Simulated AUC (nMh) with $R^2 = 0.9087$
Case Study 2: Carrier Surface Modification for DPI Development

• This case study describes work by Wu et al. (2016)
• Albuterol sulfate delivered from Cyclocaps®
• Carrier particle surface modification
  – Glass beads as carrier particle substitutes
• Particle size characterized using Next Generation Impactor
• PBPK model: Relationship between particle size and PK exposure
  – GastroPlus 8.6
PK Data Available for Model Building

- IV data from Goldstein et al. (1987) used to parameterize two compartment PK model
- Oral solution data and Ventolin® MDI data (Du et al. (2002) used to validate model
  - No Cyclocaps® PK data available

Figure 4C from Wu et al. (2016): Comparison of model Ventolin® MDI data from Du et al. (2002), where the built-in GastroPlus regional deposition predictor was used as well as the Multiple-Path Particle Dosimetry (MPPD) for regional deposition estimates.
Predictions Show Greater $C_{\text{max}}$ with Surface Engineered Glass Beads

Figure 3 from Wu et al. (2016): Particle size distribution data for Cyclocaps®, formulation with untreated glass beads, and formulation with treated glass beads, where standard deviation bars are given for each stage ($n = 3$) and results are presented with respect to emitted dose.

Figure 6 from Wu et al. (2016): Predicted plasma concentration for formulations with untreated and surface engineered glass beads using A) GastroPlus built-in regional deposition predictor and B) MPPD model.
Enhancement for PBPK Models of OINDPs Using CFD

• Many PBPK models use semi-empirical models
  – Cannot consider formulation and device differences on regional deposition

• Computational fluid dynamics (CFD)
  – Capable of modeling product differences
  – More precise mucociliary clearance modeling
Quasi-3D CFD Model for Lung Absorption

• Computational fluid dynamics (CFD)
  – Regional deposition estimates
  – Quasi-3D absorption model
• FDA Grant #1U01FD005214
  – Generic Drug User Fee Amendments (GDUFA)
• New GDUFA-funded contract (#HHS223201810182C) based on same model

Local drug concentration predictions of solid and dissolved fluticasone propionate
Fig. 15 from Kannan et al. (2018)
CFD and PBPK for Nasal Products

- PBPK model for nasal absorption
- Fully 3D CFD model predicts deposition
- FDA Grant #1U01FD005201
  – GDUFA

CFD predictions for deposition locations of fluticasone propionate droplets, from Kimbell et al. (2017)

Pharmacokinetic (PK) predictions of fluticasone propionate nasal spray, from Schroeter et al. (2017)
Support Alternative Bioequivalence (BE) Approaches

• Local concentration predictions may identify more precise in vitro and/or PK studies

• Evidentiary burden would be much higher than for product development

• Pre-ANDA meeting
Conclusions

• PBPK models can be used to inform product design and development of locally-acting OINDPs.

• Practical applications of PBPK for locally-acting OINDPs have considered a poorly soluble compound and a carrier particle modification.

• Computational fluid dynamics (CFD) is capable of predicting regional deposition while considering product differences.

• Alternative bioequivalence (BE) approaches for locally-acting OINDPs may be potentially supported by PBPK.
Acknowledgements

- FDA/CDER/OGD/ORS
  - Andrew Babiskin
  - Kimberly Witzmann
  - Myong-Jin Kim
  - Liang Zhao
  - Lei Zhang
  - Robert Lionberger

- FDA/CDER/OPQ/ONDP
  - Renishkumar Delvadia

- FDA/CDER/OPQ/SS
  - Geng Tian

- FDA/CDER/OTS/OCP
  - Bhawana Saluja

  - Jeffrey Schroeter

- CFD Research Corporation
  - Narender Singh
  - Ravi Kannan
  - Andrzej Przekwas

- University of North Carolina
  - Julie Kimbell
References


References


