A Joint Model Relating Changes in Prostate Specific Antigen to Survival in Castrate Resistant Prostate Cancer

Tu H. Mai, Elizabeth Gray, Manish R. Sharma
Fellow, Committee on Clinical Pharmacology and Pharmacogenomics
The University of Chicago

117th ASCPT, 2016, San Diego, CA
Conflict of Interest Statement

The authors have nothing to disclose
Most common cancer in men in developed countries

Local PC

Advanced PC

Androgen deprivation

Castrate-resistant

OS~ 35 months

No cure

Drug development:
- Time consuming (12-15 years)
- Costly ($1 billion)

Evaluation of efficacy depends on overall survival (OS)

Goal: Determine an early endpoint that is predictive of OS benefit for clinical trial design using model-based approach
Prostate-Specific Antigen (PSA) as a Biomarker

- PSA was recognized as a biomarker for monitoring the progression of patients with CRPC
- Easily measured in serum
- Accessible longitudinal data

Phase III Clinical Trials

- Project Data Sphere allows access to control-arm data from phase III cancer clinical trials

<table>
<thead>
<tr>
<th>ProjectDataSphere ID</th>
<th>N</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prostat_Pfizer_2008_81</td>
<td>201</td>
<td>Prednisone + Drug A</td>
</tr>
<tr>
<td>2. Prostat_Sanofi_2000_80</td>
<td>253</td>
<td>Prednisone + Mitoxantrone + Drug B</td>
</tr>
<tr>
<td>3. Prostat_Sanofi_2007_79</td>
<td>282</td>
<td>Prednisone + Mitoxantrone + Drug C</td>
</tr>
<tr>
<td>4. Prostat_Sanofi_2007_83</td>
<td>457</td>
<td>Prednisone + Docetaxel + Drug D</td>
</tr>
<tr>
<td>5. Prostat_CougarB_2008_101</td>
<td>253</td>
<td>Prednisone + Drug E</td>
</tr>
<tr>
<td>6. Prostat_Novacea_2006_89</td>
<td>312</td>
<td>Prednisone + Docetaxel + Drug F</td>
</tr>
</tbody>
</table>

Total: 1758 patients
Modeling Strategies

\[PSA(t) = BSL \times (e^{(-d \times t)} + e^{(g \times t)} - 1) \]

Approach 2: One-stage Model

Step 1
- PSA Progression Model
 - PSA data
 - Statistical Model
 - Covariates Model

Joint-Model linking PSA and survival

Step 2
- Survival Model
 - Overall survival data
 - Baseline Model
 - Covariates Model

BSL: estimated baseline PSA
\(d\): rate of decrease in PSA
\(g\): PSA growth rate
Estimation of the Parameters

Approach 1: Two-stage model

Estimates of the PSA progression model

<table>
<thead>
<tr>
<th>Population Parameters</th>
<th>Estimates</th>
<th>Units</th>
<th>BSV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (BSL)</td>
<td>138</td>
<td>ng/mL</td>
<td>162</td>
</tr>
<tr>
<td>Growth</td>
<td>0.00069</td>
<td>1/day</td>
<td>138</td>
</tr>
<tr>
<td>Decay</td>
<td>0.0113</td>
<td>1/day</td>
<td>110</td>
</tr>
<tr>
<td>Baseline Hazard of dropout</td>
<td>0.0122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant covariates in the Cox-regression survival model

- PSA doubling time
- Prior treatment with Docetaxel
- Hemoglobin
- Age
- Performance status (ECOG)
- Alkaline phosphatase
- Diagnosis
- Day
Estimation of the Parameters

Approach 2: Joint-model

<table>
<thead>
<tr>
<th>Population Parameters</th>
<th>Estimates</th>
<th>Units</th>
<th>BSV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (BSL)</td>
<td>91.4</td>
<td>ng/mL</td>
<td>156</td>
</tr>
<tr>
<td>Growth</td>
<td>0.00058</td>
<td>1/day</td>
<td>140</td>
</tr>
<tr>
<td>Decay</td>
<td>0.0114</td>
<td>1/day</td>
<td>114</td>
</tr>
<tr>
<td>Baseline Hazard of Survival (BSHZ)</td>
<td>0.00087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>0.248</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
h_i(t | \text{PSA}(t)) = h_0(t) \exp(\beta \text{PSA}(t))
\]

\[
h_0(t) = \frac{k}{\lambda} \left(\frac{t}{\lambda}\right)^{k-1}
\]

Significant Covariates

- **Growth**: Prior Docetaxel treatment, Alkaline phosphatase, Performance status
- **Decay**: Drug, Age, Performance status
- **BSHZ**: Prior Docetaxel treatment, Alkaline phosphatase
- **Beta**: Hemoglobin, Performance status, Drug, Age
- **BSL**: Hemoglobin, Performance status, Alkaline phosphatase
Predicted Survival of Simulated Data by the Joint-Model

- Relative % change from baseline in PSA at two months:
 - < -15% (Tertile 1): Median Survival (days) 483
 - -15% - 30% (Tertile 2): 420
 - > 30% (Tertile 3): 315

- Log Rank test, all arms, p < 0.00001
- Log Rank test, p = 0.0007
- Log Rank test, p < 0.00001
CRPC disease progression models were developed with 2 approaches:

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-stage Model</td>
<td>Joint-Model</td>
</tr>
<tr>
<td>• 2nd stage can be easily implemented by non-modelers</td>
<td>• Evaluate PSA kinetics and survival simultaneously</td>
</tr>
<tr>
<td>• Estimates of PSA kinetics are fixed in cox survival model</td>
<td>• More difficult to implement for non-modelers</td>
</tr>
<tr>
<td>• Requires 2 steps during development</td>
<td></td>
</tr>
</tbody>
</table>

FUTURE DIRECTIONS:

- Simulations will be run to determine the superior model by VPC for survival
- Early PSA-based endpoints will be evaluated by simulations to be used in drug development
Acknowledgement

- Manish R. Sharma, MD.
- Elizabeth Gray, MS.
- Committee on Clinical Pharmacology and Pharmacogenomics
 - Eileen Dolan, Ph.D.
 - Mark Ratain, MD.
 - Michelle Domecki, MS.
- Funding:
 University of Chicago Cancer Research Foundation Women's Board and the Division of Biological Sciences
Model Verification of PSA Values

The diagram plots the logarithm of PSA (log g/L) against study time (day). It compares observed and simulated quantiles with solid and dashed lines, respectively. The quantiles are marked at 90%, 75%, 50%, 25%, and 10%.