Translational Pharmacology & Biology of Gene Therapy for Heart Failure

David A. Gordon, PhD
Executive Director
Cardiovascular & Fibrosis Drug Discovery
Bristol-Myers Squibb, Co
Gene Therapy Overview

Correction of defective gene by insertion of genetic material into cells

- Correct; genetically defined or acquired defects
- Enhance expression, reduce expression, engineered genes/fragments
- Focused on correcting somatic cell defects
- Germ-line modification feasible but ethical issues abound

Payload
Genes
siRNA
Crispr
Talens

Expertise
Vector Design
Delivery
Production/Scale-up
Regulatory/Clinical

Delivery System
Viral:
- Adenovirus
- Adeno-associated virus
- Retrovirus
- Lentivirus

Other:
- Naked DNA
- Lipid-based
- Gene gun
Gene Therapy Brief History

Ashanti DeSilva; 1990
Severe Combined Immunodeficiency:
Gene: Adenosine deaminase
Delivery: Retroviral vector
Ex vivo Gene Tx
White cells fully functional @ 6 mos

Jesse Gelsinger; 1999
Ornithine Decarboxylase Deficiency
Gene: OD
Delivery: Adenovirus
In vivo Gene Tx targeting liver
Died shortly after Tx

First “off the shelf” Gene Tx approved in 2015; for Lipoprotein Lipase deficiency in Familial Chylomicronemia Syndrome
alipogene tiparvovec
New Gene Therapies; Emerging Rapidly

Disease therapies under development

- **Ocular Disease**
 - X-linked retinitis pigmentosa,
 - Diabetic retinopathy
 - 8 others

- **CNS Disease**
 - Parkinsons disease
 - Monogenic ALS
 - Friedrich’s Ataxia

- **Liver Diseases**
 - Hemophilias
 - Pompe disease
 - Mucopolysaccharidoses

- **Ex Vivo Gene Tx**
 - B-Thalassemia
 - Sickle cell anemia
 - Cerebral adrenoleukodystrophy

- **Cancer**
 - p53 mutations
 - CAR-T cells

- **Cardiovascular Disease**
 - Heart failure
 - Familial & Acquired Cardiomyopathies

✓ 67 Biotechs in Gene Tx
✓ Since 2009; 20 alliances
✓ All big pharmas are investing
Gene Therapy For Heart Failure; S100A1

- Multifunctional calcium binding protein; 22 kDa
- Combination of effects has possibility for robust efficacy
- Expression reduced in HF; stimulating S100A1 activity/content via traditional pharmacological therapies not feasible

Brinks, et al, JACC, 2011

*Courtesy P. Most; uniQure, U Heidelberg
AAV9-S100A1 Vector Construction

- Remove viral genes and replace with target transgene
- Viral genes provided in trans to produce transduction-competent particles

- AAV is a naturally occurring non-pathogenic virus
- Does not integrate into host genome
- In non-dividing cells (cardiomyocytes); gene expression 5+ years
- Naturally occurring serotypes allow tissue selective transduction
- Safe history in cardiac gene therapy

\(\text{AAV9-S100A1 Vector Construction} \)
Video Of Cardiac Gene Therapy

Video Courtesy Of
Roger Hajjar, MD
Director Cardiovascular Research Center
Icahn School Of Medicine
Mt Sinai Medical Center
New York, NY

Gene Therapy Delivery
Porcine HF Gene Therapy Model; S100A1

- Tx 2 weeks post MI; left circumflex occlusion
- Balloon catheters in left anterior descending artery & anterior cardiac vein.
- Occlude LAD; 3 X 45 sec
- Infuse gene Tx via ACV
- AAV9-S100A1; 1.5 X 10^{13} particles
- Targets anterior wall (5), not posterior wall (4)

Expression levels +14 weeks

Porcine HF Model; Functional Outcome & Survival

Ejection Fraction

One Year Survival

*Courtesy P. Most, uniQure, U of Heidelberg

Translational Considerations

1. Dose
 • Inverted u-shaped dose response?

2. Tissue distribution & expression
 • How to measure viral DNA, expression?
 • Insertion of viral DNA into host genome?

3. Route of administration
 • Direct into tissue, systemically?

4. Pre-existing anti-AAV antibodies
 • Does pre-existing immunity block efficacy?
 • How prevalent are anti-AAV antibodies?
 • Viable work-arounds?

5. Immune/Inflammatory reactions
 • Treatment will likely generate antibodies.
 • Does this limit to one time treatment?
 • Is immunosuppression a good idea?
Translational Considerations

6. Tox/Safety program
 • Dose multiples
 • Single administration paradigm
 • Route of administration same as planned for clinic
 • CRO’s experienced w/gene therapy & appropriate large animals

7. Scale-up & GMP production
 • Many biotechs have not developed this capability
 • Mammalian vs non-mammalian cell production

8. Regulatory
 • Guidance for AAV gene therapy is established
 • RA’s open to early/often interactions as programs approach clinical trials

9. Clinical Trials
 • Straight to patients; no trials in normal human volunteers
 • 2 Trial paradigm; dose range finding, efficacy/safety
 • Requires long term follow up at all stages
Summary

• Gene therapy is rapidly emerging as a viable therapeutic approach
• Large commitment of resources across biotech & pharma on myriad of diseases
• High interest among regulatory authorities in designing development program
• Many considerations & issues not fully resolved
Gene Therapy Partnership; BMS + uniQure