Disease Models in Oncology: Optimizing Trial Design to Maximize POS

René Bruno, Laurent Claret
Certara Strategic Consulting

ASCPT Pre-conference
Quantitative Translational Approaches in Oncology
March 8, 2016
Outline

• Oncology drug development challenges
• A drug-disease modeling framework
 – Longitudinal tumor size models
 – Tumor growth inhibition metrics
 – Survival models
• Renal cell carcinoma case study
• Discussion
Oncology drug development

- Expedited programs
 - Little learning from early clinical trials to inform late studies
 - High failure rate in late Phases
 - Large number of new agents and even larger number of combinations...

- Empirical selection of dose and dosing schedules in Phase I
 - Maximum tolerated dose (MTD)
 - Pharmacologically active dose based on biomarker responses specific to the mechanism of action
 - OK to establish proof of mechanism but not mature for dose selection
 - Cohort expansions...

- Phase II program not informative
 - Design
 - Limited to establish proof of concept; Very few randomized Phase IIb dose-ranging studies
 - Primary clinical endpoints (ORR, PFS) poorly informative

- Phase III: High failure rate
 - > 50%

- Filing: Dose justification...
- Post-marketing requests...
 - To confirm dose, optimize dosing...
A drug-disease modeling framework to optimize trial design to maximize POS

TGI = Tumor growth inhibition
ORR: Objective response rate
TTPD: Time to progressive disease
PFS: Progression free survival
Drug-specific TGI models

• Semi-mechanistic exposure-driven TGI models (simulation)
 – Tumor growth, exposure driven drug effect, resistance appearance\(^1\)-\(^5\)

• Empirical models (analysis)
 – Simplified TGI model (assumes constant exposure)\(^6\)-\(^7\)
 – Linear growth plus exponential shrinkage\(^8\)-\(^9\)
 – Exponential growth and shrinkage\(^10\)

\(^1\)Claret et al. ASCO 2006 and PAGE 2008
\(^4\)Stein et al. BMC Cancer 12:311, 2012

\(^6\)Claret et al. PAGE 2012
\(^7\)Claret et al. J Clin Oncol 31:2110-14, 2013

Models for clinical endpoints (overall survival)

- Survival time distribution is estimated (parametric model) as a function of prognostic factors and predictors
- Drug independent, disease specific model
 - TGI metric is used as a biomarker to capture drug effect
 - Historical Phase III studies can be used to develop the models
 - Overall survival models have been developed for MBC\(^1\), CRC\(^2,3\), pancreatic cancer, ovarian cancer\(^4\), H&N carcinoma, multiple myeloma\(^5\), non-hodgkin lymphoma, gastric cancer\(^6\), renal cell carcinoma\(^7\), NSCLC\(^8-10\) and GIST\(^11\)
- A few cases of external evaluations are available\(^2,5,12\)
 - More are needed

\(^1\)Claret et al. ASCO 2006 (abstract 2530)
\(^3\)Claret et al. J Clin Oncol 31:2110-14, 2013
\(^4\)Lindborn et al. ACoP, 2009
\(^5\)Jonsson et al. CPT:PSP 4:711-19, 2015
\(^6\)Quartino et al. PAGE 2013
\(^7\)Claret et al. Cancer Chemother Pharmacol 76:917-24, 2015
\(^10\)Bruno et al. Proc ASCO 2013, abstract e19103
\(^11\)Hansson et al. CPT:PSP, 2:e8, 2013

Tumor growth inhibition metrics

TGI metrics are well correlated with OS e.g. TTG in CRC

OS by quartiles of TTG

Data from two randomized phase III studies of bevacizumab plus chemotherapy in the 1st-line treatment of CRC in 813 Western patients (Hurwitz, 2004) and in 203 Chinese patients (Guan, 2011)

Correlation with OS is nice but not enough: The TGI metric should capture treatment effect (HR) too…

Colorectal cancer OS model assessment (bevacizumab hazard ratio):

The model with TTG does the job when TS ratio (week 8 to baseline ratio) does not

Modeling and simulations relating overall survival to tumor growth inhibition in renal cell carcinoma patients

Laurent Claret¹ · Francois Mercier²³ · Brett E. Houk⁴ · Peter A. Milligan⁵ · Rene Bruno¹

Cancer Chemother Pharmacol
DOI 10.1007/s00280-015-2820-x

Published online: 22 July 2015
Metastatic renal cell carcinoma (mRCC) OS model

- To leverage historical data and assess the link between TGI and OS

<table>
<thead>
<tr>
<th>Study</th>
<th>Phase</th>
<th>Line</th>
<th>N*</th>
<th>N_{eval}**</th>
<th>Treatment groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temsirolimus 1098</td>
<td>III</td>
<td>1st, poor prognosis</td>
<td>501</td>
<td>496</td>
<td>Temsirolimus, interferon, temsirolimus+interferon</td>
</tr>
<tr>
<td>Sunitinib 1006</td>
<td>III</td>
<td>2nd, refract²</td>
<td>106</td>
<td>105</td>
<td>Sunitinib 50 mg qd 4/2</td>
</tr>
<tr>
<td>Sunitinib 1034</td>
<td>III</td>
<td>1st</td>
<td>725</td>
<td>709</td>
<td>Interferon, Sunitinib 50 mg qd 4/2</td>
</tr>
<tr>
<td>Sunitinib 1065</td>
<td>II</td>
<td>1st</td>
<td>289</td>
<td>267</td>
<td>Sunitinib 50 mg qd 4/2, and 37.5 mg qd cont</td>
</tr>
<tr>
<td>Sunitinib 1072</td>
<td>II</td>
<td>1st and 2nd</td>
<td>51</td>
<td>51</td>
<td>Sunitinib 50 mg qd</td>
</tr>
<tr>
<td>Sunitinib 1110</td>
<td>NA</td>
<td>Long term extension</td>
<td>118</td>
<td>113</td>
<td>Sunitinib long term safety and tolerability</td>
</tr>
<tr>
<td>Axitinib 1012</td>
<td>II</td>
<td>2nd refract²</td>
<td>52</td>
<td>48</td>
<td>Axitinib 5 mg bid</td>
</tr>
<tr>
<td>Axitinib 1023</td>
<td>II</td>
<td>2nd, refract¹</td>
<td>62</td>
<td>50</td>
<td>Axitinib 5 mg bid</td>
</tr>
<tr>
<td>Axitinib 1032 (AXIS)</td>
<td>III</td>
<td>2nd</td>
<td>714</td>
<td>651</td>
<td>Axitinib 5 mg bid, Sorafenib 400 mg bid</td>
</tr>
<tr>
<td>Axitinib 1035</td>
<td>II</td>
<td>2nd, refract²</td>
<td>64</td>
<td>62</td>
<td>Axitinib 5 mg bid</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>2628</td>
<td>2552 (97.1%)</td>
<td></td>
</tr>
</tbody>
</table>

*N: patients with tumor size data

**N_{eval}: Patients “evaluable” with at least one post-baseline tumor size measurement in addition to baseline

1 sorafenib refractory

2 cytokine refractory
TGI model

- TGI data (sum of longest diameters) adequately described using a previously published model (Claret L. et al. JCO, 2013)

\[
Y_{ij} = \begin{cases}
Y_{i0} \cdot e^{KL_i \cdot t_{ij}} & \text{before treatment} \\
Y_{i0} \cdot e^{(KL_i \cdot t_{ij} - \frac{KD_i}{\lambda_i} (1 - e^{-\lambda_i \cdot t_{ij}}))} & \text{afterward}
\end{cases}
\]

\[
Y_{ij} = \bar{Y}_{ij} + \varepsilon_{ij},
\]

\[
\theta_i = \theta \cdot e^{\eta_i},
\]

\[
\eta_i \sim N(0, \omega^2), \quad \varepsilon_{ij} \sim N(0, \sigma^2)
\]

- The purpose of this model is to derive patient-level TGI metrics: early tumor shrinkage (ETS) at week 8, 10, 12, or time to growth (TTG)

\[
\text{week x ETS}_i = \frac{Y_{\text{Week}x,i}}{Y_{i0}} \quad \text{TTG}_i = \frac{\log(KD_i) - \log(KL_i)}{\lambda_i}
\]
OS model

- OS parametric model built by backward stepwise elimination
 - Lognormal distribution
 - Drug effect captured by week 8 ETS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (SE)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>8.07 (0.270)</td>
<td><0.001</td>
</tr>
<tr>
<td>Week 8 ETS</td>
<td>-1.99 (0.135)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>0.133 (0.111)</td>
<td><0.001</td>
</tr>
<tr>
<td>ECOG=1</td>
<td>-0.400 (0.048)</td>
<td><0.001</td>
</tr>
<tr>
<td>ECOG=(2, 3)</td>
<td>-0.163 (0.077)</td>
<td>0.033</td>
</tr>
<tr>
<td>Corrected calcium (mg/dL)</td>
<td>-0.104 (0.019)</td>
<td><0.001</td>
</tr>
<tr>
<td>Log(# metastases)</td>
<td>-0.209 (0.032)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time from diagnosis (days)</td>
<td>8.0E-5 (1.7E-5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline LDH (U/L)</td>
<td>-3.7E-4 (9.2E-5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Lung metastases (yes)</td>
<td>-0.138 (0.046)</td>
<td>0.002</td>
</tr>
<tr>
<td>Log(scale)</td>
<td>-0.107 (0.020)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

SE: standard error, p: wald test (χ^2)
+ sign favorable; - sign not favorable
OS in days

OS Model Validation

- The model was evaluated using posterior predictive checks
 - OS distribution and hazard ratios (HR) were simulated (1000 replicates).

Metastatic renal cell carcinoma (mRCC) OS model

• Model simulations
 – Predictive distribution of HR comparing an investigational treatment to sunitinib in a 600 patient study (300 per arm) as a function of difference in tumor growth inhibition (delta in week 8 ETS)

A 300 patients per arm Phase III study would have a 80% probability of technical success to show a HR < 0.80 (target product profile)

Summary

• Week 8 ETS, an early measure of tumor growth inhibition, had satisfactory performance to predict OS in 10 clinical studies of a variety of treatments in metastatic RCC
• Clinically relevant ETS targets for future Phase 2 studies with investigational treatments were simulated
• One can play with the simulations to adapt to desired product profile, investigational treatment and number of patients in pivotal study
• This model and another one for PFS (published soon) are being used to support interim decisions in ongoing studies
Discussion
Clinical development questions to maximize POS

• **POM-POC: Is the drug doing anything?**
 – Demonstrate exposure-response with appropriate biomarkers, sensitive metrics or drug effect

• **Is the dose/schedule right?**
 – Take advantage of exposure variability to simulate dose response (efficacy and/or safety)

• **What is the most informative Phase II study design?**
 – Use an early TGI metric as endpoint
 – Assess target effect associated with desired OS improvement

• **End-of-Phase II decision: Is the effect seen in Phase II worth it?**
 – Simulate expected OS advantage based on TGI

• **Phase III study design and conduct**
 – Simulate probability of technical success
 – Support interim futility analysis based on TGI

• **Use of longitudinal tumor size data and sensitive TGI metrics is much more informative than traditional endpoints**
 – No regulatory issue as far as limited to support decision making
 – Has also been accepted to address PMR and avoid a clinical study
Acknowledgements

• Pharsight
 – P. Chanu, F. Mercier (now with Roche), P. Girard (now with Merck-Serono)

• F. Hoffmann-La Roche, Basel, Switzerland and Shanghai, China
 – K. Zuideveld, K. Jorga, J. Fagerberg, M. Abt
 – F. Schaedeli Stark, F. Sirzen, R. Gieschke, N. Frey
 – Bob Powell

• Genentech, South San-Francisco, CA
 – J.Y. Jin, A. Joshi and colleagues

• Pfizer, La Jolla and Sandwich
 – J. Zheng, Y. Pithavala, P. Milligan and team