Green tea effects on pharmacokinetics and pharmacodynamics

Shingen Misaka

Department of Pharmacology
Fukushima Medical University
School of Medicine
Topics to be covered

• Green tea and catechins
• Clinical pharmacokinetics of catechins
• Green tea-drug interactions in humans
 ✓ CYP-mediated interactions
 ✓ Drug transporter-mediated interactions
Green tea

Consumption of green tea in Japan and the USA

• Tea is the most widely consumed beverage in the world next to water.

• About 15% of Japanese (older than 40 y.o., male 17.9% and female 13.1%) consumed more than 10 cups of green tea in a day (>1800 mL).

 (Imai et al., Prev Med 1997, 26:769–75)

• “Tea sales in the U.S. have increased five-fold in 25 years, to more than $10 billion dollars.”

Green tea catechins (flavan-3-ol)

Reported health benefits
✓ Cancer prevention
✓ Reducing cardiovascular risk
✓ Anti-obesity
✓ Anti-infection
✓ Anti-oxidative stress

Naturally occurring catechins (cis-type)

- Epigallocatechin gallate (EGCG)
- Epigallocatechin (EGC)
- Epicatechin (EC)
- Epicatechin gallate (ECG)

- 50-80% of total catechins
- Most bioactive

Heat-epimerized catechins: gallocatechin gallate (GCG), gallocatechin (GC), catechin (C), catechin gallate (CG)
Contents of catechins in Japanese green tea

Catechin concentrations

<table>
<thead>
<tr>
<th>Catechin</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGC</td>
<td></td>
<td></td>
<td>1.3 (0.6–1.8) mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3 (0.2–0.7) mM</td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td>1.4 to 4.0-fold</td>
<td>2.3 (1.7–2.8) mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4 (0.1–1.1) mM</td>
</tr>
<tr>
<td>ECG</td>
<td></td>
<td></td>
<td>0.6 (0.4–0.8) mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 (0.04–0.2) mM</td>
</tr>
<tr>
<td>EGCG</td>
<td></td>
<td></td>
<td>0.2 (0.07–0.3) mM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.07 (0.03–0.2) mM</td>
</tr>
</tbody>
</table>

A cup of brewed green tea contains approx. 100 mg of EGCG

Caffeine

<table>
<thead>
<tr>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brewed GT</td>
<td>1.8 (0.5–2.4) mM</td>
<td></td>
</tr>
<tr>
<td>Bottled GT</td>
<td>0.8 (0.5–1.1) mM</td>
<td></td>
</tr>
</tbody>
</table>

(modified from Mizukami et al., J Agric Food Chem, 2007)
Topics to be covered

- Green tea and catechins
- Clinical pharmacokinetics of catechins
- Green tea-drug interactions in humans
 - CYP-mediated interactions
 - Drug transporter-mediated interactions
Pharmacokinetics of catechins after green tea intake

- Subjects received 700 mL of green tea (350 mL × 2 at 0 and 0.5 hr)

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>EGC</th>
<th>ECG</th>
<th>EGCG</th>
<th>0.3 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>168</td>
<td>37.8 (34.7–40.9)</td>
<td>49.4 (30.0–68.7)</td>
<td>141.2 (111.5–171.0)</td>
<td>322</td>
</tr>
<tr>
<td>91</td>
<td>1.0 (0.5–2)</td>
<td>1.0 (0.5–2)</td>
<td>1.0 (1–2)</td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>1.5 (1.3–1.8)</td>
<td>1.6 (1.3–1.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometric mean (90% CI); n = 10

(Misaka et al., Clin Pharmacol Ther, 2014)
Pharmacokinetics of EGCG in humans

EGCG dose vs. C_{max}

- $r^2 = 0.5812$
- $P = 0.0463$

- Log P: 1.41 ± 0.03
- $P_{\text{app,a-b}}$: 0.83 ± 0.24 (× 10^{-7} cm/s, Caco-2 cells)
- C_{max}: 50 ng/mL (0.11 μM) after 100 mg dose
- t_{max}: 1.6 ± 0.4 (h)
- $t_{1/2}$: 1.5 ± 0.9 (h)
- EGCG appears unconjugated in the blood.

Absorption of EGCG

Intestine is the main site of green tea-drug interactions.

EGCG dose: 100 mg (218 μmol)
Assumed GI fluid (0.5 – 11 L)

EGCG conc. in the intestine may reach 20 – 436 μM.

Reference:
Topics to be covered

• Green tea and catechins
• Clinical pharmacokinetics of catechins
• Green tea-drug interactions in humans
 ✓ CYP-mediated interactions
 ✓ Drug transporter-mediated interactions
Possible two different mechanisms

OATPs: OATP1A2 and OATP2B1; P-gp: P-glycoprotein; BCRP: breast cancer resistance protein
In vitro inhibitory effect of catechins on human CYPs

<table>
<thead>
<tr>
<th>CYP</th>
<th>K_i (μM)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1A1</td>
<td>16.6</td>
<td>Mixed</td>
</tr>
<tr>
<td>CYP1A2</td>
<td>9.5</td>
<td>Noncompetitive</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>41.1</td>
<td>Mixed</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>18.0</td>
<td>Noncompetitive</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>57.8</td>
<td>Mixed</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>13.0</td>
<td>Noncompetitive</td>
</tr>
</tbody>
</table>

Substrate: 7-Ethoxycoumarin (CYP1A1), 7-Ethoxyresorufin (CYP1A2), Coumarin (CYP2A6), Diclofenac (CYP2C9), 4-Nitrophenol (CYP2E1), Midazolam (CYP3A4)

(Muto S. et al., Mutat Res, 2001)
Case report suggesting green tea-simvastatin interaction

![Graphs showing Simvastatin lactone and Simvastatin acid (active metabolite) plasma concentrations over time with and without green tea.]

Table. Pharmacokinetic Parameters of Simvastatin Lactone and Simvastatin Acid after Oral Administration of 20 mg of Simvastatin

<table>
<thead>
<tr>
<th>Substance</th>
<th>$C_{\text{max}}, \text{ ng/mL}$ No Green Tea</th>
<th>$C_{\text{max}}, \text{ ng/mL}$ Green Tea</th>
<th>$T_{\text{max}}, \text{ h}$ No Green Tea</th>
<th>$T_{\text{max}}, \text{ h}$ Green Tea</th>
<th>AUC $0-t, \text{ ng/mL} \times \text{h}^{-1}$ No Green Tea</th>
<th>AUC $0-t, \text{ ng/mL} \times \text{h}^{-1}$ Green Tea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simvastatin lactone</td>
<td>3.70</td>
<td>7.21</td>
<td>1</td>
<td>2</td>
<td>6.3</td>
<td>12.5</td>
</tr>
<tr>
<td>Simvastatin acid</td>
<td>1.41</td>
<td>1.73</td>
<td>2</td>
<td>2.5</td>
<td>2.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

AUC = area under the curve; C_{max} = maximum plasma concentration; T_{max} = time to C_{max}.

(Werba et al., Ann Internal Med, 2008)
In vitro inhibitory effect of catechins on human CYPs

IC\textsubscript{50} of EGCG

<table>
<thead>
<tr>
<th>Organ</th>
<th>IC\textsubscript{50} of EGCG (μM)</th>
<th>Mean with 95% CI</th>
<th>Human liver microsome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2B6 Liver</td>
<td>8.3 (4.8–14.5)</td>
<td></td>
<td>Human liver microsome</td>
</tr>
<tr>
<td>CYP2C8 Liver</td>
<td>10.9 (7.3–16.0)</td>
<td></td>
<td>Human liver microsome</td>
</tr>
<tr>
<td>CYP2C19 Liver, intestine</td>
<td>101.3 (29.8–343.6)</td>
<td></td>
<td>Human liver microsome</td>
</tr>
<tr>
<td>CYP2D6 Liver</td>
<td>68.5 (44.5–105.4)</td>
<td></td>
<td>Human liver microsome</td>
</tr>
<tr>
<td>CYP3A4/5 Intestine, liver</td>
<td>23.3 (15.0–36.1)</td>
<td></td>
<td>Human liver microsome</td>
</tr>
</tbody>
</table>

Substrate: Bupropion (CYP2BA6), Amodiaquine (CYP2C8), Diclofenac (CYP2C9), Fluvastatin (CYP2C9), S-mephenytoin (CYP2C19), Dextromethorphan (CYP2D6), Midazolam (CYP3A).
GT affects simvastatin disposition (Japanese)

Randomized crossover study in healthy volunteers

- Green tea contained EGCG of 46 mg/100 mL.

Simvastatin lactone

- Mean ± SD (n = 12)

Simvastatin acid (active metabolite)

- C_{max} 1.6-fold
- AUC 1.5-fold

(Werba et al., Curr Pharm Des, 2015)
Possible mechanism underlying GT-simvastatin interaction

SL: Simvastatin lactone, SA: Simvastatin acid
Pie chart of CYPs in human intestine and liver

Small intestine
- CYP2C19
- CYP2D6
- CYP2J2
- CYP2C9
- CYP3A

Liver
- CYP1A2
- CYP2E1
- CYP2B6
- CYP2A6
- CYP2D6
- CYP3A
- CYP2C

(Shimada et al., J Pharmacol Exp Ther, 1994; Paine et al., Drug Metab Dispos, 2006)
Inhibition of diclofenac metabolism by EGCG and GT

- Recombinant human CYP2C9 bactosome
- CYP2C9 substrate: Diclofenac (4’-hydroxylation) CYP2C9

IC$_{50}$ = 1.9 (0.5-6.7) μM for EGCG

IC$_{50}$ = 0.5 (0.2-1.3)% for Green tea

(Misaka et al., unpublished data)
Inhibition of fluvastatin metabolism by EGCG and GT

\[IC_{50} = 44.8 \ (1.2-1687) \ \mu M \]

(Misaka et al., unpublished data)
Fluvastatin

• Acid-type statin

• Bioavailability: 29%

• Plasma protein binding: more than 98%

• BCS and BDDCS class I drug

• Metabolism: CYP2C9 (major), CYP3A (minor)

• Drug transporter
 Efflux: BCRP (major), P-gp and MRP2 (minor)
 Uptake: OATP1B1, OATP1B3, OATP2B1

• Drug interaction
 Fluconazole (CYP2C9 inhibitor) increased fluvastatin AUC by 84%.

(Kantola et al., Eur J Clin Pharmacol 2000)
Green tea-fluvastatin interaction study

- Randomized open 3-phase crossover design
- Subject: healthy volunteers
- Fluvastatin dose: 20 mg with 300 mL of water or green tea
- Green tea (Harada Tea Processing Co., Ltd., Shizuoka, Japan)
 - Brewed (2.2 g/100 mL water) before fluvastatin dosing
 - EGCG concentration: 50 mg/dL
 - EGCG dose: 150 mg (300 mL)
- Green tea extract (Sunphenon®-EGCG, Taiyo Kagaku, Yokkaichi, Japan)
 - Total catechin content: 97.4%
 - EGCG: 92.5%
 - ECG: 3.8%
 - Caffeine: not detected
 - EGCG dose: 150 mg
→ EGCG dose was the same both in green tea and GTE
Effect of green tea on fluvastatin pharmacokinetics

- Green tea → AUC 14%
- GTE → AUC 4%

(Misaka et al., unpublished data)
Summary of CYP-mediated drug-green tea interaction

✓ Catechins can inhibit CYPs such as CYP3A and CYP2C9 in vitro

✓ Clinical studies suggest that green tea increases simvastatin exposure
 → The interaction is less pronounced compared with grapefruit juice

✓ Green tea and GTE may not affect fluvastatin pharmacokinetics
Topics to be covered

• Green tea and catechins
• Clinical pharmacokinetics of catechins
• Green tea-drug interactions in humans
 ✓ CYP-mediated interactions
 ✓ Drug transporter-mediated interactions
Inhibitory effects of catechins on drug transporters in vitro

P-glycoprotein

(Jodoin et al., Biochim Biophys Acta, 2002)

OATP1A2

OATP2B1

(Roth et al., Drug Metab Dispos 2011)
Nadolol

- Nonselective β-blocker
- Bioavailability: less than 30%
- Plasma protein binding: 24%
- Metabolism: negligible
- Excretion: urine
- Drug transporter
 Efflux: P-glycoprotein
 Influx: OATP1A2
- Drug interactions
 Itraconazole (P-gp inhibitor) increased nadolol AUC by 224%.

(Misaka et al., J Clin Phramacol, 2013)
Clinical study

- Randomized, open-label, 2-way crossover study
- Subjects: 10 healthy Japanese male volunteers
 Age: 23.8 y.o. (range 20–30)
 Male: 8; female: 2
 BMI: 21.2 kg/m² (range 18.3–23.9)
- Subjects received 700 mL/day of green tea or water for 14 days.
- On day 15, nadolol (30 mg) was administered orally with 350 mL of green tea or water.
- Subjects drank another 350 mL of green tea or water 30 min after nadolol administration.
- Green tea contained EC, EGC, ECG and EGCG of 80, 240, 130 and 460 μg/mL, respectively, determined by UPLC/ESI-MS.
Green tea greatly reduces nadolol exposure

![Graph showing nadolol plasma concentration over time with and without green tea]

AUC 85%

<table>
<thead>
<tr>
<th>Water</th>
<th>Green tea</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (ng/mL)</td>
<td>55.7 (24.8–86.5)</td>
</tr>
<tr>
<td>AUC_{0-48} (ng·h/mL)</td>
<td>708.9 (569.8–848.0)</td>
</tr>
</tbody>
</table>

, **,** $P < 0.01$, 0.001 vs. Water

Mean ± SD ($n=10$)

(Misaka et al., Clin Pharmacol Ther, 2014)
Effect of green tea on nadolol urinary excretion

Green tea did not influence nadolol renal clearance

Green tea may affect nadolol intestinal absorption

** $P<0.01$ vs. water

(Misaka et al., Clin Pharmacol Ther, 2014)
Possible mechanism underlying GT-nadolol interaction

NDL: Nadolol

NDL

Catechin

OATP1A2

OATP2B1

P-gp

Intestinal lumen

Enterocyte

Blood vessel

Hepatocyte

(Misaka et al., Clin Pharmacol Ther, 2014)
Further questions regarding nadolol-green tea interaction

- Even a single intake of green tea could cause the interaction?
- Catechins such as EGCG are causative substances?
- How much catechin is required to clinically relevant interaction?
- How long does the interaction last?
- How about the other drugs (drug transporter-mediated interaction)?
GTE-nadolol interaction study

- Randomized, open 3-phase crossover study
- Subject: healthy volunteers
- Nadolol dose: 30 mg with 300 mL of water with GTE
- Green tea extract (Sunphenon®-EGCG, Taiyo Kagaku)
 - EGCG dose:
 - 50 mg (16.7 mg/dL)
 - 150 mg (50 mg/dL)
 - GTE was dissolved in water prior to administration

EGCG concentration in Japanese green tea preparations

![Graph showing EGCG concentration in different green tea preparations](image-url)
Effect of EGCG on nadolol concentrations

Nadolol plasma concentrations in healthy volunteers

Mean ± SD

Nadolol + EGCG 50 mg → AUC 38%

Nadolol + EGCG 150 mg → AUC 46%

(Misaka et al., Unpublished data)
Further questions regarding nadolol-green tea interaction

- Even a single intake of green tea could cause the interaction?
 → Yes, in case of nadolol.

- Catechins such as EGCG are causative substances?
 → Yes, at least EGCG.

- How much catechin is required to clinically relevant interaction?
 → Our data suggest 50 mg of EGCG could cause interaction.

- How long does the interaction last?
 → Unknown, but we will plan to address this question.

- How about the other drugs (drug transporter-mediated interaction)?
 → Unknown, but should be tested.
Summary

Green tea catechins

- Hydrophilic, poor permeable, and low bioavailability.
- Interaction with drugs could mainly occur in the intestine.

CYP-mediated green tea-drug interactions

- Catechins can inhibit CYPs including CYP3A and CYP2C9 in vitro.
- Green tea slightly increases simvastatin acid concentration in vivo.
- Green tea and GTE may not affect fluvastatin pharmacokinetics in vivo.

Drug transporter-mediated green tea-drug interactions

- Catechins can inhibit several influx and efflux transporters in vitro.
- Green tea significantly decreases nadolol concentration in vivo.
- EGCG is the one of causative component in green tea.
- Single intake of 50 mg EGCG could influence nadolol pharmacokinetics.
Acknowledgements

Prof. Junko Kimura
Prof. Yayoi Shikama
Dr. Osamu Abe
Dr. Yuko Ono
Dr. Junichi Yatabe
Dr. Midori S. Yatabe

Prof. Dr. Martin F. Fromm
Prof. Dr. Jörg König
Dr. Hartmut Glaeser
Dr. Fabian Müller
Dr. Jana Knop

Prof. Shizuo Yamada
Prof. Satomi Onoue

Prof. Hiroshi Watanabe

Dr. José Pablo Werba
Thank you for your attention