Implementation of Multi-ethnic Algorithm-Guided Warfarin Dosing

Stuart A. Scott, PhD
Department of Genetics and Genomic Sciences
The Charles Bronfman Institute for Personalized Medicine
Icahn School of Medicine at Mount Sinai

March 15th 2017

2017 CPIC Symposium
Washington, DC
I. INTRODUCTION
 A. Mount Sinai Health System
 B. Mount Sinai Pre-emptive Pharmacogenomics Programs

II. IMPLEMENTATION
 A. Warfarin Pharmacogenetics
 B. Multi-ethnic Warfarin Dosing Strategy
 C. Pilot Implementation Results

III. LESSONS LEARNED / FUTURE DIRECTIONS
Icahn School of Medicine at Mount Sinai

- **1968** School opened
- Freestanding medical school at the forefront of scientific training, biomedical research, and patient care

- 34 Departments
- 23+ Clinical and Research Institutes
- 5,600+ Faculty Members
- 2,000+ Residents and Fellows
- 556 Medical Students
- 90 MD/PhD Students
- 258 PhD Students
- 240 Masters Students
- 600+ Postdoctoral Students

#4 in research dollars per principal investigator among U.S. medical schools

For you. For life.
The Charles Bronfman Institute for Personalized Medicine (IPM): BioMe™ Biobank

• Prospective collection of DNA and plasma samples linked to EHR for genomic medicine research.

• DNA and plasma samples linked to de-identified EHR (Mount Sinai Data Warehouse).
 – Affymetrix, Illumina, panels, exomes

• Originally developed to enable genomic discovery, later evolved to facilitate clinical implementation.

• Permission to re-contact participants for future research.
The Charles Bronfman Institute for Personalized Medicine (IPM): BioMe™ Biobank

• > 35,000 patients enrolled; 500 new subjects per month.
Table 1 Summary of the genotyping platform used by five US institutions to implement array-based, preemptive pharmacogenetic testing

<table>
<thead>
<tr>
<th>Institution (reference)</th>
<th>Genotyping platform</th>
<th>Number of genes assayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayo Clinic (43)</td>
<td>PGRNseq</td>
<td>84</td>
</tr>
<tr>
<td>Mount Sinai Medical Center (42)</td>
<td>Sequenom iPLEX ADME PGx</td>
<td>36</td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital (65)</td>
<td>Affymetrix DMET Plus Array</td>
<td>230</td>
</tr>
<tr>
<td>University of Florida and Shands Hospital (35)</td>
<td>Life Technologies Quant Studio Open Array</td>
<td>120</td>
</tr>
<tr>
<td>Vanderbilt University Medical Center (69)</td>
<td>VeraCode ADME Core Panel</td>
<td>34</td>
</tr>
</tbody>
</table>

IMPLEMENTATION: PRE-EMPTIVE PGx TESTING

IPM PGx
- 1000 BioMe patients
- Internal Medicine Associates (IMA) clinic
- Genotyping (Agena)
- Providers are consented and surveyed
- Unlimited number of drug-gene pairs
- CLIPMERGE
- EHR data collection

eMERGE PGx
- 663 BioMe and non-BioMe patients
- Faculty Practice Associates (FPA) clinic
- Sequencing (PGRNseq) and genotyping (Agena)
- Providers are co-investigators
- CDS for simvastatin, clopidogrel and warfarin
- CLIPMERGE
- EHR data collection

Objective: Develop process best-practices for implementation of personalized medicine.
- Focus on providers
- eMERGE PGx also enables discovery
IMPLEMENTATION: PRE-EMPTIVE PGX TESTING

• One hour training session, online video available.
 - Only ~40% of surveyed providers felt knowledgeable about genomic testing.

• Complete pre- and post-training questionnaires.

• Additional information on drug-gene pairs embedded in the CDS.

• Post-CDS surveys.

Figure 2. Experience with decision support aids and genome-guided prescribing.

- 90% of respondents use decision support aids.
- 90% of respondents perform genome-guided prescribing.

IMPLEMENTATION: PRE-EMPTIVE PGX TESTING

- Mount Sinai IPM PGx programs (n=1641):
 - Clopidogrel: **CYP2C19**; Simvastatin: **SLCO1B1**; Warfarin: **CYP2C9 / VKORC1**; Tramadol: **CYP2D6**; Codeine: **CYP2D6**
~77% of patients have at least one ‘actionable’ variant in CYP2C19, SLCO1B1, CYP2C9, and/or VKORC1.
IMPLEMENTATION: PRE-EMPTIVE PGX TESTING

- Implementation is enabled by CLIPMERGE:
 - Advanced data management system that is external to, but communicates with Epic.
 - Clinical decision support (CDS) in real-time at the point-of-care.
Warfarin Pharmacogenetics
WARFARIN PHARMACOGENETICS: BACKGROUND

• Widely used oral anticoagulant for prevention of thrombosis and embolism.
 • AF, DVT, PE, MV

• Wide interindividual differences in drug response:
 • Narrow therapeutic range
 • High risk of bleeding or stroke

• Requires frequent monitoring by INR (typical target 2-3).

• Warfarin dosing variability is due to many factors:
 • Age, gender, drug interactions, diet (vitamin K), alcohol, smoking, pharmacogenetics (PK and PD)
WARFARIN PHARMACOGENETICS: BACKGROUND

Warfarin PGx dosing algorithms have been tested retrospectively and in clinical trials.

- Warfarindosing.org; IWPC: CYP2C9*2, *3, VKORC1 -1639G>A
Warfarin PGx dosing algorithms have been tested retrospectively and in clinical trials.

- Warfarindosing.org; IWPC: \textbf{CYP2C9*2, *3, VKORC1 -1639G>A}

<table>
<thead>
<tr>
<th>WPGx Trial</th>
<th>Year</th>
<th>Design</th>
<th>n</th>
<th>Comparison Arm</th>
<th>Primary End point</th>
<th>Result</th>
</tr>
</thead>
</table>
| CoumaGen | 2007 | RCT | 206 | Standard dosing | Out of range (OOR) INRs | 1. PGx more accurate
2. No difference in OOR INR |
| Medco-Mayo | 2010 | CE | 896/2688 | Standard dosing (concurrent+historical) | Incident event rate | Hospitalizations: HR 0.69
Bleeding/thrombo: HR 0.72 |
| Marshfield | 2011 | RCT | 230 | Clinical algorithm | 1. Prediction error
2. PTTR | 1. PGx more accurate
2. No difference in PTTR |
| CoumaGen-II| 2012 | CE | 504/1866 | Standard dosing (historical) | 1. OOR INRs
2. PTTR | 1. Fewer OOR INRs
2. Greater PTTR
3. Fewer events |
| EUPACT | 2013 | RCT | 455 | Standard dosing | PTTR | 1. Greater PTTR
2. Fewer INR >4
3. Less time to INR |
| COAG | 2013 | RCT | 1015 | Clinical algorithm | PTTR | 1. No difference in PTTR
2. No difference time to INR
3. No difference in > or < INR |
| GIFT | 2015 | RCT | 1600 | Clinical algorithm | Composite thrombo, bleeding, INR >4, death | 2017 |

Scott SA and Lubitz SA. Pharmacogenomics, 2014.
Common warfarin PGx dosing algorithms do not perform well in non-Caucasian populations.
 - Particularly among African-Americans
 - COAG: 27% self-reported black

NYC-Mount Sinai multi-ethnic CYP2C9 (*2 and *3) + VKORC1 (-1639G>A) allele frequencies:

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African-American</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>78%</td>
<td>76%</td>
</tr>
<tr>
<td>Variant carriers</td>
<td>22%</td>
<td>24%</td>
</tr>
</tbody>
</table>

WARFARIN PGx: AFRICAN ANCESTRY VARIANTS

• **DISCOVERY:** Novel variants in the African-American population (IWPC-GWAS).
 - **CYP2C region:** rs12777823 \((p=0.5\times10^{-12}) \); AA MAF: 25%
 - Explains \(~5\%\) of dosing variability in AA population.

• **ALGORITHMS:** Improvements in African-Americans.
 - **CYP2C9*5, *6, *8, *11; and rs12777823**
 - Inclusion of these variants improved prediction for both WD and IWPC algorithms.
 - **Drozda K, et al. Pharmacogenet Genomics, 2015.**

• **ALGORITHMS:** Improvements in African-Americans.
 - Race-specific pharmacogenetic algorithms, rather than race-adjusted algorithms, should be used to guide warfarin dosing.
WARFARIN PGx: CYP2C9 and VKORC1

- **Sinai IPM PGx / eMERGE PGx Cohort (n=1641):**

 - **NM: 75%**
 - **IM: 23%**
 - **PM: 2%**

 CYP2C9:*

 VKORC1:
 - -1639G>A
 - GG: 53%
 - GA: 36%
 - AA: 11%

 -1639G>A
Objective: enable point-of-care warfarin dose prediction for patients of different ancestries.

Four possible outcomes:
1. PGx algorithm dosing (IWPC)
2. FDA label-based dosing (tables)
3. Clinical algorithm dosing (IWPC)
4. Empiric dosing
WARFARIN PGx: IMPLEMENTATION STRATEGY

• **Stage 1:**

 ![Diagram of the implementation strategy]

 - WARFARIN PRESCRIPTION THROUGH EHR
 - Was warfarin initiated within the last six weeks?
 - YES
 - NO
 - Is patient enrolled in IPM PGx or eMERGE PGx?
 - YES
 - NO
 - Are CYP2C9 and VKORC1 genotype results available in CLIPMERGE?
 - YES
 - NO

WARFARIN PGx: IMPLEMENTATION STRATEGY

- **Stage 2:**

 - Is CYP2C9 genotype *2/*2, *2/*3, or *3/*3?

 - YES
 - NO

 - Is patient Caucasian as per EHR?

 - YES
 - NO

 - Is CYP2C9 genotype *1/*1, *1/*2, or *1/*3?

 - YES
 - NO

WARFARIN PGx: IMPLEMENTATION STRATEGY

- **Stage 3:**

 Is CYP2C9 genotype *1/*1, *1/*2, or *1/*3?

 ![Diagram](image)

 Pharmacogenetic Dosing:
 1. Display CDS with PGx algorithm-recommended dose
 2. File CDS text in EHR
 3. File CYP2C9 and VKORC1 genetic testing report in EHR

 FDA Label-Based Dosing:
 1. Display CDS with an FDA label-recommended dose
 2. File CDS text in EHR
 3. File CYP2C9 and VKORC1 genetic testing report in EHR

 Clinical Algorithm Dosing:
 1. Display CDS with a clinical algorithm-recommended dose
 2. File CDS text in EHR
 3. File CYP2C9 and VKORC1 genetic testing report in EHR

 Empirical Dosing:
 1. Do not display CDS
 2. Log all patients

WARFARIN PGx: POINT-OF-CARE CDS

- Clinical Decision Support:

 - Clinical Decision Support:

 - Pharmacogenetics Advisory: Warfarin
 - According to genetic testing, this patient is intermediate Warfarin Sensitivity (A/G).
 - The therapeutic warfarin dose estimated by the patient's genetic information.
 - The recommended therapeutic dose is 5.5 mg/day.

 - Please disregard this dosing recommendation.
 - Target INR: 2.3
 - Age: 52
 - Height: 155.0 cm
 - Weight: 80.3 kg
 - Race: Black or African American
 - Currently taking Carbamazepine, Phenytoin, or Rifampin/Rifampicin?
 - No
 - Currently taking Amiodarone?
 - No

 - The predicted personalized starting dose* of Warfarin for this patient is 5.5 mg/day (37 mg/week).
 - * daily doses have been rounded to the nearest 0.5 mg

 - Please disregard this dosing recommendation if any of the following applies to this patient:
 - This patient is on a stable dose of warfarin.
 - The target INR is not 2.3.
 - The clinical information used in this algorithm is inaccurate.

 - Acknowledge reason:
 - Ignore - Not relevant to this patient
 - Ignore - Insufficient evidence
 - Ignore - Don't understand advice
 - Ignore - Other reason

 - Open SmartSet CLIPMERGE preview

WARFARIN PGx: ISMMS and CPIC 2017

VKORC1 and CYP2C9*2 and *3 genotype available?

- **YES**
 - Self-identified ancestry
 - Non-African ancestry
 - **STRONG**
 - VKORC1-1639G>A and CYP2C9*2 and *3: Calculate dose based on validated published pharmacogenetic algorithms
 - African ancestry
 - CYP2C9*5, *6, *8, and *11 also tested?
 - **YES**
 - 1) VKORC1-1639G>A and CYP2C9*2 and *3: Calculate dose based on validated published pharmacogenetic algorithms.
 - 2) Carriers of CYP2C9*5, *6, *8 or *11 variant alleles (e.g., *1/*8, *1/*11, *8/*11): Decrease calculated dose by 15-30%.
 - African American?
 - **YES**
 - rs12777823 tested?
 - **YES**
 - rs12777823 A carriers: decrease dose by 10-25%
 - **NO**
 - rs12777823 A carriers: decrease dose by 10-25%
 - **NO**
 - For initial dosing, a pharmacogenetics-based warfarin initiation dose algorithm could be considered.

- **NO**
 - Dose clinically

- **OPTIONAL**
 - Carriers of CYP2C9*5, *6, *8 or *11 variant alleles (e.g., *1/*8, *1/*11, *8/*11): Decrease calculated dose by 15-30%.
 - Carriers of CYP4F2 rs2108622 T allele: Increase dose by 5-10%.

WARFARIN PGx: IMPLEMENTATION RESULTS

• How often are the dosing recommendations accepted and how accurate are they?

• A subset of providers (~10-20%) switched to novel oral anticoagulant (NOAC) after initiating warfarin.
 – Patients that were difficult to reach INR.

• Provider ACCEPTANCE manually determined by chart review of warfarin dosing patterns during initiation.
 – ‘Therapeutic’ defined by stable dose over 3 consecutive INRs.

• Algorithm-based doses ACCEPTED by providers: 56%

• Majority of algorithm-guided CDS was triggered for clinical algorithm dosing (~85%).
How often are the dosing recommendations accepted and how **accurate** are they?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Within +/- 1 mg of daily therapeutic dose</th>
<th>78%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREDICTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dose accuracy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LESSONS LEARNED and FUTURE DIRECTIONS

1. Warfarin is still commonly prescribed and managed in IMA clinic.
 • Provider education is critical.
 • Target Coumadin clinics.

2. Ancestry informed algorithm-based point-of-care warfarin dosing is accepted by majority of exposed providers.
 • Enabled more accurate prescribing than empirical dosing.

3. Clinical algorithm-based warfarin dosing is an option for implementation in non-Caucasian patient populations.
 • Additional \textit{CYP2C9} star (*) alleles and African-American variants are included in the forthcoming comprehensive MGTL PGx panel.
ACKNOWLEDGEMENTS

IPM:
Erwin Bottinger, MD
Judy Cho, MD
Aniwaa Owusu Obeng, PharmD
Steve Ellis
Tom Kaszemacher
Noura Abul-Husn, MD, PhD
Omri Gottesman, MD
Rajiv Nadukuru
Vaneet Lotay
Amanda Merkelson
Ana Mejia
Bernadette Liggayu
Patrick Shanley

FPA and IMA:
Aida Vega, MD
Eva Waite, MD

GGS and Genome Institute:
Robert J. Desnick, PhD, MD
Eric E. Schadt, PhD
Inga Peter, PhD
Yao Yang, PhD
Mariana Botton, PhD

MGTL:
Lisa Edelmann, PhD
Ruth Kornreich, PhD
Rajasekar R-Chakravarthi

Epic Team
Kristin Myers
Joseph Kannry, MD
Kevin Delaney
Aditi Vakil
Riya Deepak
Elizabeth Kerch
Noel Howard
Paul Francaviglia
Karen Trommer
Jason Martin
Daniel Edonyabo
Daniel Katselnik

Thank you.
stuart.scott@mssm.edu
stuartscotlab.org

NIH / NIGMS (PGRN)