Biomarkers of CYP3A activity: What have we learned and are we ready to utilize biomarkers to replace clinical DDI studies?

Perspectives and case examples from industry

Helen Gu
Pharmacokinetic Sciences
Novartis Institute for Biomedical Research
East Hanover, NJ
Compound A

Complex *in vitro* DDI properties: CYP3A4 substrate, mixed time-dependent inhibition, reversible inhibition and induction of CYP3A

Question: What is the net effect of parent + metabolites on midazolam exposure at steady-state in patients?
An integrated PBPK approach

Model development

<table>
<thead>
<tr>
<th>Compound A</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) In vitro phenotyping; 2) Human ADME; 3) Clinical studies SD and MD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model performance verification

- DDI studies with SD of **Compound A** + MD of CYP3A4 modulators
- Midazolam DDI study after 4 daily doses of **Compound A**

Model simulations

- The effect of **Compound A** and metabolites on midazolam exposure at steady-state
 - 4βHC data up to 28 days (n=10)

Confirmation
Assessment of net effect

Simulated PK profiles

Time course of plasma 4βHC

<table>
<thead>
<tr>
<th>Time [Days]</th>
<th>3</th>
<th>8</th>
<th>15</th>
<th>22</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted midazolam AUC GMR</td>
<td>0.84</td>
<td>0.60</td>
<td>0.55</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Median Plasma 4βHC ratio relative to baseline (n=10)</td>
<td>1.2</td>
<td>1.4</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Best case = weak induction (FDA, 2012)

Worst case = moderate induction (Mangold et al 2016)

Limitation of 4βHC to differentiate weak and moderate induction given the complexity of TDI/induction by parent + metabolites
Compound A conclusions

• PBPK model predicted a weak induction of CYP3A (best case scenario).

• Inducer classification based on model predicted 4βHC changes classified Compound A as moderate CYP3A inducer (worst case scenario).

• An integrated approach increased our confidence in DDI predictions.
Compound B: available data

• *In vitro* studies
 – CYP3A4-mediated metabolism
 – Weak CYP3A4 inducer

• Clinical PK and DDI studies
 – Study with itraconazole: fmCYP3A4 of ~0.8
 – Long t$_{1/2}$ (~160 hr); 28 days to steady-state
 – Plasma 4βHC levels (multiple ascending dosing, 90 days)

Question: Is it possible to determine the CYP3A4 induction potential clinically using 4βHC data from FIH study?
Method

Application of plasma 4\(\beta\)HC data

A dynamic model (Yang et al., 2010)

- Bottom-up approach using in vitro EC\(_{50}\) predicted midazolam AUC GMR of 1
- Top-down approach used to calculate optimized EC\(_{50}\) (~13-fold reduction)

PBPK model

Optimized PBPK model predicted that **Compound B** would result in midazolam AUC GMR of 0.66 (weak)

<table>
<thead>
<tr>
<th>Days</th>
<th>Regulatory CYP3A inducer classification based on model-predicted 4(\beta)HC increase (MDZ AUC GMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechanism–based PK/PD (Leil et al., 2014)</td>
</tr>
<tr>
<td>90</td>
<td>Moderate</td>
</tr>
<tr>
<td>14</td>
<td>Weak (0.62)</td>
</tr>
</tbody>
</table>
Compound B conclusions

• PBPK model predicted MDZ AUC ratio of 0.66 (weak)
• The prediction was confirmed by biomarker data quantitatively.
• Compound B advanced to POC testing without the need of midazolam DDI study.
• Is it important to measure 4βHC levels at late time point (after 2-week) for compounds with long $t_{1/2}$ to capture PK steady state of perpetrator as well as 4βHC?
Acknowledgements

• James Mangold
• Sam Rebello
• Catherine Dutreix
• Taoufik Ouatas
• Matthieu Villeneuve
• Felix Huth
• Hilmar Schiller
• Kenichi Umehara
• Birk Poller
• Gilbert Lefevre