The Interaction of Excipients with the Intestinal Transporter, OATP2B1

Kathy Giacomini
UCSF

ASCPT: How Inert Are Excipients?

Science at Sunrise
2017
Biopharmaceutical Classification System Class 3 Biowaivers

BCS Class 3 Drugs

Low Permeability/High Solubility Drugs

e.g., cimetidine, metformin, acyclovir, fexofenadine

Influx Transporters
Intestinal Drug Transporters

ABC Superfamily

- P-glycoprotein (ABCB1)
- BCRP (ABCG2)

SLC Superfamily (Solute Carrier Superfamily)

- PEPT1 (SLC15A1)
- OATP2B1 (SLCO2B1)
- THTR2 (SLC19A3)
Organic Anion Transporting Polypeptide, OATP2B1 - High Expression In Intestine

Diverse Substrates

- Cardiovascular Drugs (fluvastatin, talinolol)
- Hormones (estrone-3-sulfate)
- Anti-diabetic agents (glyburide)
- Antihistamines

Fexofenadine
OATPs Are Targets for Drug Drug Interactions

F. Qiang et al., Eur. J. Pharm. Sci, V 37, 2009
Influence of Apple Juice on Fexofenadine Absorption

N = 14
Fexofenadine (60 mg p.o.) +/- Apple juice (400 mL)

S-Fexofenadine Concentration, ng/mL

0 10 20 30
Time, hours

S-Fexofenadine Uptake, µL/120 min/oocyte

0.0 0.015 0.030

Apple Juice: phloridzin, phloretin, hesperidin, quercetin

OATP2B1

+ Apple Juice
Goal: To determine whether *excipients* used in oral drug products can inhibit OATP2B1.
Classification of 138 Oral Molecular Excipients

N = 138

CERSI Excipient Browser: http://excipients.ucsf.bkslab.org/
Characterization of OATP2B1-mediated Dibromofluorescein Uptake

Uptake time: 2 min

Km = 4 µM

DBF Uptake, pmol/min

Concentration, µM

OATP2B1 Cells

Empty Vector Cells
Screen of Oral Excipients for OATP2B1 Inhibitors

- Screen 138 Oral Molecular Excipients
- Identified 27 Inhibitors (> 50%)
- Conduct Aggregation Tests
- Conduct IC$_{50}$ Studies
- Potential Clinical Relevance
Summary of the Inhibitory Effect of 138 Oral Molecular Excipients

DBF concentration: 2 μM
Uptake time: 3 min

114 Non-inhibitors
24 Inhibitors
IC$_{50}$ Studies of Selected Excipients Identified as OATP2B1 Inhibitors

- FD&C Red No.40: $K_i = 2.5 \, \mu M$
- FD&C Yellow No.6: $K_i = 65.2 \, \mu M$
- D&C Red No. 6: $K_i = 10.8 \, \mu M$
- Neohesperidin dihydrochalcone: $K_i = 19.1 \, \mu M$
- Butylparaben: $K_i = 42.3 \, \mu M$
- Sucrose Monolaurate: $K_i = 45.5 \, \mu M$

Y-axis: DBF Uptake (% of Control)
X-axis: Concentration (log [µM])
OATP2B1 Inhibitory Potencies of Excipients: Dyes are most potent

<table>
<thead>
<tr>
<th>Excipient</th>
<th>Ki (μM)</th>
<th>Ki (95% Confidence Intervals)</th>
<th>Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD&C Red No. 40</td>
<td>2.47</td>
<td>1.83 – 3.33</td>
<td>No Aggregation @ 500 μM</td>
</tr>
<tr>
<td>FD&C Orange No. 4</td>
<td>2.02</td>
<td>1.77 – 2.29</td>
<td>No Aggregation @ 100 μM</td>
</tr>
<tr>
<td>Sodium Lauryl Sulfate</td>
<td>1.88</td>
<td>1.31 – 2.72</td>
<td>No Aggregation @ 50 μM</td>
</tr>
<tr>
<td>FD&C Green No. 5</td>
<td>1.47</td>
<td>1.13 – 1.92</td>
<td>No Aggregation @ 5 μM</td>
</tr>
<tr>
<td>FD&C Red No. 28</td>
<td>0.96</td>
<td>0.62 – 1.5</td>
<td>No Aggregation @ 10 μM</td>
</tr>
<tr>
<td>FD&C Red No. 3</td>
<td>0.84</td>
<td>0.66 - 1.06</td>
<td>No Aggregation @ 500 μM</td>
</tr>
<tr>
<td>Light Green CF Yellowish</td>
<td>0.77</td>
<td>0.69 – 0.85</td>
<td>No Aggregation @ 200 μM</td>
</tr>
<tr>
<td>Guinea green b</td>
<td>0.73</td>
<td>0.61 – 0.87</td>
<td>No Aggregation @ 5 μM</td>
</tr>
<tr>
<td>D&C Red No. 27</td>
<td>0.73</td>
<td>0.43 - 1.25</td>
<td>No Aggregation @ 5 μM</td>
</tr>
<tr>
<td>Naphthol blue black</td>
<td>0.38</td>
<td>0.31 - 0.47</td>
<td>No Aggregation @ 5 μM</td>
</tr>
</tbody>
</table>
Several Dyes Have Azo Bonds that are Subject to Reduction by Intestinal Bacteria

D&C Orange No. 4 → 4-aminobenzene sulfonic acid + 1-amino-2-naphthol
E. Coli Transformed with AzoR Reduce Dyes 48 Hours After Incubation
Do the reduced metabolites inhibit OATP2B1?
D&C Orange No. 4 is a More Potent Inhibitor of OATP2B1 than Its Reduced Metabolites

D&C Orange No. 4 → 4-aminobenzene sulfonic acid + 1-amino-2-naphthol

DBF Uptake, % of Control

Log Concentration (µM)
Ki Values for Inhibition of OATP2B1 is Much Higher for the Reduced Metabolites

<table>
<thead>
<tr>
<th>Excipient</th>
<th>K_i (μM)</th>
<th>K_i (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Metabolite 1</td>
</tr>
<tr>
<td>FD&C Yellow No. 6</td>
<td>65.2</td>
<td>> 200</td>
</tr>
<tr>
<td>D&C Red No. 33</td>
<td>55.4</td>
<td>> 50</td>
</tr>
<tr>
<td>D&C Red No.7</td>
<td>10.8</td>
<td>> 200</td>
</tr>
<tr>
<td>D&C Brown No.1</td>
<td>3.0</td>
<td>> 200</td>
</tr>
<tr>
<td>FD&C Red No.40</td>
<td>2.5</td>
<td>> 50</td>
</tr>
<tr>
<td>D&C Orange No. 4</td>
<td>2.0</td>
<td>> 200</td>
</tr>
</tbody>
</table>

Bacteria in Intestine May Reduce the Dyes and inactivate Dyes as Inhibitors of OATP2B1:
Potential *In Vivo* Relevance

Estimated Maximum Intestinal Concentration = \[
\text{Maximum Allowable Amount} \div 250 \text{ mL}
\]

<table>
<thead>
<tr>
<th>Excipient</th>
<th>Max Amount</th>
<th>Predicted Max. Gut Con. (μM)</th>
<th>(K_i) (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD&C Red No. 40</td>
<td>7 mg*</td>
<td>3950</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Amounts allowed in dosage forms may be much less.

* Acceptable Daily Intake (ADI), Data from WHO
Max amount used as surfactant in beverage, CFR 21
Conclusions

- 24 excipients inhibit OATP2B1, and 114 were deemed “non-inhibitors.”
- Some excipients are predicted to inhibit OATP2B1 at allowable intestinal concentrations.
- Excipients with azo bonds may be reduced by intestinal bacteria and the reduced products are weaker inhibitors of OATP2B1.
- The Ki values of excipients will be posted on the CERSI Excipient Browser: http://excipients.ucsf.bkslab.org/.
Acknowledgements

Ling Zou
Brian Shoichet
Josh Pottel
John Irwin
Deanna Kroetz

Office of Generic Drugs
Rob Lionberger
Xinyuan (Susie) Zhang
Hong Wen
Zhanglin Ni
Susan Zuk
Liang Zhao
Eleftheria Tsakalozou

Frank Weichold
York Tomita
Donna Blumkemelor
Audrey Thomas
Rebekah Zinn
Maria Friciello
Russ Altman