Comparison of Non-compartmental Analysis Estimation and Population Pharmacokinetic Predictions of Exposure Changes as a Function of Renal Impairment

Mariam Ahmed, Ph.D.
Mentor: Islam R. Younis, M.S, Ph.D.

Office of Clinical Pharmacology
Office of Translational Sciences
US Food and Drug Administration
Disclaimer

The opinions expressed in this presentation are those of the authors. No official FDA guidance should be taken or inferred from this presentation.
Research Objective

To compare exposure changes as a function of renal impairment utilizing
1. Non-compartmental analysis estimation
2. Population pharmacokinetics predictions
Methods: Inclusion/Exclusion Criteria

Survey of NMEs (2000 and 2015) (N=373)

Dedicated Renal impairment Study (Full Study Design) (N=100)

Dedicated RIS and PopPK from Phase II/III (N=44)

Reports available (N=28)

RFI is not significant covariate (N=10)

Combination drugs (N=1)

Total # of NMEs Included (N=17)
Excluded Cases
Methods

• Renal impairment classification was based on C-G equation as follows:
 – Normal: CrCL ≥ 80 mL/min
 – Mild: CrCL ≥ 50-<80 mL/min
 – Moderate: CrCL ≥ 30-<50 mL/min
 – Severe: CrCL<30 mL/min

• Submitted PopPK models were used to predict observed AUC for each subject enrolled in RIS
 – 1000 simulation per subject
 – The non-parametric prediction interval for AUC GMR was calculated by computing the 5th and 95th percentiles of the model-based predicted GMR based on the 1000 simulations
Results: Description

RIS

<table>
<thead>
<tr>
<th>Normal Renal Function</th>
<th>Mild Renal Impairment</th>
<th>Moderate Renal Impairment</th>
<th>Severe Renal Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Number of Subjects Included</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

PopPK

| Median Number of Subjects Included | 636 | 166 | 12 | 4 |
Results: Concordance

Number of Cases where AUC Geometric Mean Ratios (GMR) was not within the Same Fold

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>0/17 (0%)</td>
<td>4/16 (25%)</td>
<td>5/17 (29%)</td>
</tr>
<tr>
<td>Pred</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symbols:
- fe<30%
- fe≥30%
Potential Factors for Differences

- Fraction excreted in urine.
- Inclusion of RIS data in PopPK model development
- Number of subjects with renal impairment in phase II/III trials
- Covariate model
 - Inclusion of correlated covariates
Results: Colinearity of Covariates was a Major Factor in Differences

Number of Cases where AUC Geometric Mean Ratios (GMR) was not within the Same Fold

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colinearity</td>
<td>0/7 (0%)</td>
<td>4/7 (57%)</td>
<td>4/7 (57%)</td>
</tr>
<tr>
<td>No colinearity</td>
<td>0/10 (0%)</td>
<td>0/9 (0%)</td>
<td>1/10 (10%)</td>
</tr>
</tbody>
</table>

fe<30% fe≥30%
Conclusions

• In general, there is a good concordance between PopPK and NCA results

• Inclusion of correlated covariates in model development increases the discordance between PopPK predictions and NCA analysis
Acknowledgments

• Mentor: Islam R. Younis, Ph.D.
• Jeffry Florian, Ph.D.
• Rajnikanth Madabushi, Ph.D.