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Overview

. Today’s Anti-Cancer Agents

Vision: Simultaneous inhibition of multiple targets to

enhance activity in broader population with less resistance

O Multiple mechanism of action
O Multiple molecule types
O Combination therapy (NME+SOC, NME+NME)
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NME: new molecular entity; SOC: standard of care
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. Modeling and Simulation in Drug Development

Project Modeling (Molecule-specific)

IND EOP2 BLA/NDA
Pre-IND : Ph la Ph Ib/ll Ph 1l Ph IV
v v v

Pre IND Phase I/Il/III

« Human dose - Dose optimization: translational & clinical PK/PD » Dose
projection: - Regimen and dosing schedule optimization: longitudinal M&S justification
gaK?gSt'onal - Effect of intrinsic factors: PopPK, PBPK e Clinical

. Exposure and - Effect of extnpsm factors: PquK, PBPK ‘ pharmacqlog_y
target - QT prolongation: concentration-QT characterization
girtng%%zrgt?g;_at « Decision making
tissue PK/PD, . E)é%olg/lljarg and response at site of action: biomarker PK/PD, « Label
PBPK/PD

- Sampling optimization: Trial simulation

Platform Modeling (Cross-molecules)

M&S for molecule platform and/or disease platform: disease progression, prediction of outcome by early
endpoints, literature meta-analysis, system pharmacology modeling (QSP), etc.
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. Modeling and Simulation in Drug Development

Pre-IND

©2017, Genentech

IND

NME+SOC
Combo

EOP2

Cancer
Immunotherapy

BLA/NDA

Ph la

Ph b/l

Ph I

Proliferation
Survival
Invasion

jﬁ( Drug Targets

DOQOOO00OO

’ .‘* P

Ras

Ph IV

IL-12

CTLA4/BT.A
PO-L1/PD-1
PD-L1/B7.1
prostaglanding

CD40LICD40
CDON

ATP

HMGB1

TLR

IL-10

L4
IL-13

W Inhibitors

Tolergenic cefl death

o
(B) T el recapte
\"I' Reduced pMHC on cancer cells

cer cells

-\‘7. | T cell granuie content

[[o]s] MICAMICE
TGF-p B7-H4
BTLA TIM-3/phaspholipids

, Infiltration of T cells
into tumors
LFA1NCAMT
Selecting
VEGF
Endathelin B receplor

cancer cells by T calls

Chen & Mellman; Immunity 2013 Genentech

A Membe:

» Roche



. Dose Selection for Ipatasertib

O The PISK/AKT pathway is central for cancer cell growth and survival
U Ipatasertib (GDC-0068) is a potent, oral, ATP-competitive AKT inhibitor

Ipatasertib 2L mMCRPC Phase 2 (A.MARTIN) Study Design

n= 80/arm ) -
Abiraterone* + GDC-0068 400 mg QD
Randomize 240 pts 1:1:1 stratify:

Prior treatment with enzalutamide (Y/N)

*Progression Factor (PSA only vs other) —=—> Abiraterone* + GDC-0068 200 mg QD —
o# prior chemotherapies for metastatic

disease (1 vs >1)

- Comparison 1

=— Comparison 2

Abiraterone* + Placebo -
*Abiraterone (1000mg) and : :
prednisone/prednisolone (5mg BID). (11 ratio to 400mg QD/pIacebO and
Assignment to the 200 mg/placebo or -—
400r?19/placebo group is Igngwn,treatment is Zoomg QD/pIacebO groups) A.MARTIN
blinded

Clinical Question: What is the recommended Ipatasertib dose for further
development in mMCRPC?

Zhu R, et al, Abstract PI-133, ASCPT, 2017 (Thur Mar 16, 4:30-6:30)
De Bono JS, et al. Abstract #5017, ASCO, 2016
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. Dose Selection: Account for Dose Reduction

Clinical Question: How to account for the confounding effect of dose reduction in Phase 2?

Dose Intensity
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. Dose Selection: Exposure-Response

Hazard Ratio to Placebo

Exposure-Efficacy: radiographic PFS
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Dose-rPFS projections from Cox regression
model of exposure-rPFS coupled with dose
intensity model

Zhu R, et al, Abstract PI1-133, ASCPT, 2017 (Thur Mar 16, 4:30-6:30)
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. Dose Selection: Clinical Utility Index

Benefit-risk analysis via exposure-response and clinical utility index
(CUI) approaches indicated that 400 mg QD Ipatasertib has the highest
probability of achieving the minimal Product Profile (PP) with better
benefit/risk balance than 200, 300, or 500 mg QD.

Dose-CUI Analysis
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Impact: Overall, Ipatasertib 400mg QD dose was supported by M&S for further development in mCRPC.

Zhu R, et al, Abstract PI1-133, ASCPT, 2017 (Thur Mar 16, 4:30-6:30)
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. Modeling and Simulation in Drug Development
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Atezolizumab Case Example

. Cancer Immunotherapy and Atezolizumab

Cancer-immunity Cycle & Therapeutic Intervention PD-L1 and Atezolizumab
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U Atezolizumab is a humanized engineered mAb that selectively targets PD-L1
- By inhibiting interactions with receptors PD-1 and B7.1, anti-cancer immunity can be reinvigorated and enhanced*?
U Atezolizumab has demonstrated efficacy and safety in a broad range of cancer types, including mUC,
NSCLC and RCC135

1 Herbst Nature 2014.2 Chen Immunity 2013. % Powles Nature 2014. G h
©2017, Genentech 4. Rosenberg Lancet 2016. 5 Fehrenbacher Lancet 2016. ) F,,':‘E,"}';’-Er



. Atezolizumab in NSCLC: POPLAR Study

The POPLAR study is an open-label, Phase 2 randomized controlled trial of atezolizumab compared to
docetaxel in patients (n=297) with advanced NSCLC who progressed on post-platinum chemotherapy!
U Median OS: Atezolizumab 12.6 months (95% CI: 9.7-16.4); Docetaxel 9.7 months (8.6-12.0)
U Hazard ratio: 0.73 (95% CI: 0.53-0.99, p=0.040)

1001 — Exposure-response:

U OS is correlated with
atezolizumab exposure

0.75 1 0 Exposure-OS relationships are

confounded with baseline

=

E prognostic factors

%.EI.E{I-

z

@ Clinical Question: Is there any

P h"ﬁ_ﬁ dose adjustment need for
- (4143, 5543) Atezolizumab due to loss of
[5545.10766] efficacy in patients with lower

exposure, or increased safety risk
In patients with higher exposure?

noo- AUCSss terciles in pg.day/mL

0 100 200 200 400 500
Time (days)

1 Fehrenbacher et al, Lancet 387, 1837-1846, 2016
Bruno et al. ACoP 2016
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. Oncology Modeling Framework

Models-based tumor growth inhibition (TGI) metrics could be used as
biomarkers to capture treatment effect and predict for OS benefit.

Phase |l Phase Il

> Tumor growth > Overall

Dose | Exposure inhibition survival

Drug-specific Disease-specific

Q1: Can causality for exposure-response (via tumor growth inhibition) as
a way to mitigate confounding by baseline prognostic factors?

_ Bruno et al. Clin Pharmacol Ther, 93:303-5, 2013 Courtesy of Rene Bruno Genentech

A Member of the Roche Group
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Atezolizumab Case Example

. Tumor Response Data from POPLAR

Atezolizumab Docetaxel
(1200 mg IV g3w) (75 mg/m? IV q3w)
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. Dose Justification for Atezolizumab in NSCLC

log(KG)

The bi-exponential Stein model: TS(t) =TS, * [exp(—KS * t) + exp(KG = t) — 1]

Stein et al. CCR 17:907-17, 2011

AUC:ss terciles Covariates HR CI HR Plot
3393 [1974, 4143) Original 0.98 (0.92,1.03) e
4750 [4143. 554 ioi
e . s suos 4750 [4143, 5548) Original 0.72 (0.68.0.77)
. 3 [55 igi 5 46,0.5
6903 [5548,10766] Original 0.51 (0.46.0.56)
3393|1974, 4143) Balanced 0.85 (0.81.0.89) e
4750 [4143, 5548) Balanced 0.77 (0.73,0.82) o
6903 [5548,10766] Balanced 0.62 (0.56.0.68)
I T T T
‘ ‘ ‘ ‘ . 04 0.6 0.8 1
e o Auc"::?ug caymL) o o AUCss tertiles=median, interval, [a, b); HR=Hazard ratio distribution over 1000 replicates; 95%PI1=95% prediction interval,

5000 patients, 1000 replicates

Slower tumor growth (KG) in atezolizumab arm
KG correlated with atezolizumab exposure

is no longer significant

O 0UDOo

In the multivariate OS model, with baseline prognostic factors and KG capturing treatment effect, atezolizumab exposure

The multivariate OS model was used to simulate exposure-response with OS after adjusting for prognostic

Impact: Overall PK-TGI-OS M&S suggested no dose adjustment need due to loss of efficacy in patients
with lower exposure, supporting the Atezolizumab dosing of 1200 mg g3w in 2L+ NSCLC patients.

Bruno et al. ACoP 2016
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Atezolizumab Case Example

. Oncology Modeling Framework

Models-based tumor growth inhibition (TGI) metrics could be used as biomarkers to
capture treatment effect and predict for OS benefit.
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Q2: Is this paradigm working for cancer immunotherapy?
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. Qualification of TGI~OS Model in POPLAR

Fropartion

The OS model appears to capture treatment effect of Atezolizumab in POPLAR study.
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The POPLAR project suggested validity of TGI~OS paradigm for cancer immunotherapy. This
approach is being further evaluated and validated for broader CIT development.

Bruno et al. ACoP 2016

Genentech



. Final Remarks

O Identification of the “optimal dose” is one of the primary challenge and
opportunity in today’s drug development

- Challenge the MTD paradigm with today’s anti-cancer therapies

O Continuously learn and confirm paradigm using novel quantitative and
experimental approaches is key for success in drug development

- Modeling and simulation throughout the life cycle of a drug to effectively interrogate:
* Dose, exposure, efficacy, and safety
= Preclinical and clinical
= Historical and emerging data
= Disease biology
= Mechanism of action
= Concentration and response at site of action

- Clinical trial designs that enable the study of dose-exposure-response
= Optimized and adaptive design
Multiple dose and schedules
Effective measurements of drug activity — imaging, biomarkers, efficacy/safety endpoints
Assessment of exposure and response at site of action

©2017, Genentech GenenteCh
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