Dose Selection in Early Oncology Trials

Yan Ji, Ph.D.
Novartis Institutes for Biomedical Research
ASCPT, Washington DC
March 16, 2017
Oncology drug development has made substantial progress

More efficacious and safer treatment for longer-term use is necessary
Oncology dose finding paradigm has been changing

From identifying maximum tolerated dose (MTD) to optimizing dose regimen

- MTD may not be the optimal dose
- Maximum efficacy may be achieved below the MTD
- Optimal biologic dose to saturate target and block pathway
- Cancer may become chronic disease
- Long-term cumulative toxicity is important to address
Post marketing trials were required to optimize dose in recent oncology submissions

<table>
<thead>
<tr>
<th>Compound</th>
<th>M&S summary</th>
<th>Post Marketing Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axitinib</td>
<td>PK and E-R modeling enabled dose escalation schemes</td>
<td>Dose escalation schemes approved</td>
</tr>
<tr>
<td>Trametinib</td>
<td>E-R relationship with biomarkers</td>
<td>No evident impact</td>
</tr>
<tr>
<td>Vismodegib</td>
<td>Exposure/Responder analysis</td>
<td>No evident impact</td>
</tr>
<tr>
<td>Trastuzamab emtansine</td>
<td>Narrow therapeutic window</td>
<td>Impact on dose uncertain, pending additional analyses</td>
</tr>
<tr>
<td>Cabozantinib</td>
<td>~80% dose reductions</td>
<td>Possibly new dose trial</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>Dose modifications not supported</td>
<td>Develop 100mg formulation</td>
</tr>
<tr>
<td>Ipilimumab</td>
<td>ER suggests higher dose</td>
<td>Explore higher dose</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>No exposure-efficacy, yes with toxicity</td>
<td>Explore other regimens</td>
</tr>
</tbody>
</table>
Dose optimization in oncology is challenging

- Narrow therapeutic index
- High variability of drug response
 - Heterogeneity of the disease and patients
 - Phase I patients not representing intended population
 - Heavily pre-treated and concomitant medications
- Development of drug resistance
- Complexity of the biology
- Linkage of biomarkers to clinical outcome can be difficult
- Limitation in study design due to severity of disease
- Urgency to deliver effective treatments to patients
M&S in early oncology trials can inform dose optimization

- Characterize exposure-response and therapeutic window
- Characterize time course of response
- Identify the biomarkers that correlate to pathway inhibition
- Leverage preclinical data
- Characterize inter-patient variability
- Inform both dose and schedule
Case Study 1: ABL001

Allosteric Bcr-Abl inhibitor for Chronic Myeloid Leukemia

ABL001
First in class allosteric inhibitor

Gleevec® (Imatinib)
Tasigna ® (Nilotinib)
Sprycel ® (Dasatinib)
Bosulif ® (Bosutinib)
Inclusig ® (Ponatinib)

Chromosomal Translocation

Biomarker of response
Molecular Response
Molecular response: primary efficacy endpoint

Measurement of Bcr-Abl transcript

- Assessed in peripheral blood by RT-PCR
- International scale: log reduction of transcript levels
 - >10%: failed MR
 - ≤10%: MR1
 - ≤0.1%: MR3 (MMR)
 - ≤0.01%: MR4 (CMR)
 - ≤0.0032%: MR4.5

Diagram:
- **Diagnosis**
- **Cytogenetics**
 - CCyR
 - MMR
 - CMR
 - ~5-6 log reduction

Axes:
- **Time**
- **Chronic myeloid leukemia (log10)**

Legend:
- MMR = major molecular response.
- CMR = complete molecular response.
- RT-PCR = reverse transcription polymerase chain reaction.
PKPD semi-physiological model

- Mimics leukemic cell maturation: Maturation time
- Reproduces disease progression: Immature cells turnover rate
- Accounts for existing resistance: Fraction of sensitive cells

\[\text{MMT} = \frac{4}{ktr} \]

\[(1 - frS) \cdot (ktr + grS) \]

\[frS \cdot (ktr + grS) \]

\[krs \cdot C(t) \]

- Describe BCR-ABL(%) kinetics
- Estimate concentration for stable disease
- Provide exposure target for dose and schedule optimization
Individual PD profiles

BCR-ABL (%)

Time (months of 28d)
Individual average concentration for stable disease vs. PK

- Population average concentration for stable disease = 1 ng/ml
- Individual values ranging from 0.07 to 61 ng/ml due to large variability on estimated individual disease progression

![Graphs showing concentration over time for different doses](image)
Clinical PKPD analysis results are consistent with preclinical data

- Required average concentration for stable disease = 1 ng/ml

- Individual values ranging from 0.07 to 61 ng/ml (0.014 to 122 nM)

- IC90 for pSTAT5 inhibition KCL-22 xenograft mice after PPB correction: 121 ng/mL (free: 11 nM)

- In vitro gIC50 KCL-22 cell line expressing WT BCR-ABL: 1 ng/mL (2.1 nM)
PK/PD analysis supported dose selection for Phase I expansion

- Clear advantage of 40 mg vs. 20 mg BID

<table>
<thead>
<tr>
<th>BID Dosing</th>
<th>Percent (95% CI) patients with at least 1 log 10 reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 mg</td>
</tr>
<tr>
<td>Tx Duration</td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>33% (24-42)</td>
</tr>
<tr>
<td>12 months</td>
<td>42% (32-52)</td>
</tr>
</tbody>
</table>
Case Study 2: WNT974

- WNT ligands activate the pathway
- Porcupine is required for WNT ligand formation
- WNT974 blocks Porcupine activity
- RNF43 and RSPO regulate Wnt pathway signaling

| Dose finding in early oncology trials | Yan Ji | ASCPT March 16, 2017 |
PK modeling and ER analysis to support dose finding

- Exposure-response analysis identified a therapeutic window
- PK simulations found a dose yielding exposures within that window
- That dose has been selected as the recommended dose for expansion

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population PK modeling</td>
<td>To characterize PK</td>
</tr>
<tr>
<td>ER analysis for biomarker</td>
<td>To explore and characterize the relationship of exposure vs. PD biomarker</td>
</tr>
<tr>
<td>Logistic regression for safety</td>
<td>To explore and characterize the relationship of exposure vs. AE</td>
</tr>
</tbody>
</table>
Population PK modeling

Single-dose

Dose - 5 mg

Dose - 30 mg

Repeat-dose

C1D15, 5 mg QD

C1D15, 30 mg QD

| Dose finding in early oncology trials | Yan Ji | ASCPT March 16, 2017 |
Exposure-response analysis for PD biomarker and safety

EC₅₀ = 0.45 ng/mL (90% Prediction interval: 0.1 - 2.6)
Integrative analysis of PK, PD and safety data supported dose selection for Phase I expansion

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Criteria</th>
<th>Exposure threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomarker</td>
<td>>50% maximal inhibition with 95% probability</td>
<td>C_{\text{trough,ss}} > 2.6 \text{ ng/mL}</td>
</tr>
<tr>
<td>AE</td>
<td>50% probability that <25% patients have Gr\geq 2</td>
<td>C_{\text{max,ss}} < 118 \text{ ng/mL}</td>
</tr>
</tbody>
</table>
Summary

- Prospective M&S in early oncology trials informs dose optimization
- M&S integrates data including PK, biomarker, efficacy and safety
- Models are continuously refined based on emerging data
- Greater need to apply quantitative methods to understand drug response
Thank you

• Varsha Iyer, Christophe Meille (ABL001)
• The individuals who worked to discover and develop these medicines
• The patients who participated in our clinical trials