The incident with the experimental fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 during a clinical study in which one study participant died and five participants were hospitalized is nearly a year old [1]. The irreversible binding and limited specificity of BIA-10 2474 [1] make it a high-risk candidate for adverse events. Several reasons for these seemingly unexpected adverse drug effects have been previously suggested [2]. The endocannabinoid system (ECS) targeted by FAAH inhibitors has been studied for several pathophysiologies including chronic pain, appetite control, anxiety and the immune response, making it a promising but also challenging system to modulate therapeutically.

Another very recent example is a case report published in NEJM, which described the occurrence of rare but fatal adverse event due to acute heart failure with anti-cancer immune checkpoint inhibitors [3]. It is relatively easy to understand that suppressing immune checkpoints will increase the probability of the immune system attacking native organs. However why does this not happen in everybody? The answers may lie in considering responses across a spectrum of varying cell biological and physiological responses based on the individual’s genome and environmental exposure.

Could we have foreseen these events based on prior knowledge, and if so how should such predictions be utilized during drug development? The use of quantitative systems pharmacology (QSP) to guide drug development is becoming common [4, 5]. QSP approaches have been suggested for prediction of adverse events [6, 7]. Specifically for FAAH inhibitors, already in 2014, a QSP model that provides a mechanistic pharmacological understanding of drug action of FAAH inhibitors was published [8]. However, it appears that use of such modeling approaches to predict adverse events during drug development is lagging.

The increasing availability at reduced cost of high-throughput molecular profiling technologies for prediction of adverse events based on mechanism rather than phenotype models is rapidly receiving increased interest from regulatory authorities and pharmaceutical industry [7, 9]. Examples are academic research consortia such as the NIH-funded DToxS research center that develops cellular signatures for drug toxicity based on multiple human-derived cell lines, and similar European Union funded consortia such as EU-ToxRisk.

Investment by the pharmaceutical industry in pre-competitive public-private consortia could be a driver for a concerted effort to predict rare adverse events early during drug development in
order to bring safer drugs to patients. Access to robust systems models and integration with prior cell and tissue physiology knowledge as well as individual genomic information could provide a major pre-competitive boost to the pharmaceutical companies by reducing attrition [10]. A “virtual” Bell Lab that combines expertise in industry, academia and government regulatory agencies could play a defining role integrating different data streams and developing artificial intelligence based approaches to build a new generation of smart preclinical models to predict adverse events that can have robust clinical impact.

References

1. "Version anglaise : Minutes of the Temporary Specialist Scientific Committee (TSSC) meeting on "FAAH (Fatty Acid Amide Hydrolase) Inhibitors" of 15/02/2016 (08/03/2016)”. Agence Nationale de Sécurité du Médicament et des Produits de Santé (ANSM).
Would you like to suggest or contribute a Hot Topic? Please contact:

Shruti Agrawal, MS, PhD
Director, Clinical Pharmacology and Pharmacometrics
Cancer Immunotherapy
Bristol-Myers Squibb Co.
Princeton NJ 08543
E-mail: agrawal.scientist@gmail.com

Islam Younis, PhD
Team Leader - Antiviral Team
Food and Drug Administration
10903 New Hampshire Ave,
Silver Spring, MD 20993
E-mail: islam.younis@fda.hhs.gov

Hazem E. Hassan, PhD, MS, RPh, RCDS
Assistant Professor and Director
Pharmacokinetics and Biopharmaceutics Lab (PBL)
University of Maryland School of Pharmacy
20 N Pine Street, Rooms: N525 (Office), N406 (Lab), Baltimore, MD 21201
E-mail: hhassan@rx.umaryland.edu